

HV390 Series Frequency Inverter User Manual

HNC Electric Limited

Foreword

Thank you for using the HV390 series of high performance vector inverter

HV390 series inverter is a new generation of high performance vector control inverter developed by our company. The product has advanced control mode, and realizes high torque, high precision, high reliability and wide speed drive. The inverter built in simple PLC, PID controller, programmable input and output terminals, RS485 interface, analog input / output control function and other richcontrol functions. It provides a high degree of integration solution for equipment support, engineering transformation, automation control and special industry application

This manual is random data ,It is only for safety considerations, installation and wiring, keyboard operation, table function, fault code construction , maintenance and other aspects of the presentation, For detailed functional notes, please refer to the HV390 product brochure or consult our companyThis manual is the basic instruction document for your proper use and display of its superior performance and safe operation. Please read it carefully and keep it properly, and please hand it to the end user of this product

In the process of using, If you have any problems or special requests, please contact our company (Office) or dealer ,You can also contact our customer service center directly, and we will be happy to serve you,

The company has been committed to the continuous optimization of the product, because this series of products and related information may be optimized or changed, there are possible changes, subject to change without notice.Please forgive me for the inconvenience caused

Reader

This instruction manual is suitable for the following personnel to read

Inverter installation personnel, engineering and technical personnel (electrical engineers, electrical operators, etc.), designers

Please ensure that this instruction manual reaches the end user.

General notes

Causion: Due to the dangers posed against the required operation, may lead to moderate harm or minor injuries, and damage to the equipment;

Warning: Due to the dangers posed against the required operation, may result in serious injury and even death;

Contents

CHAPTER 1 INTRODUCTION TO HV390 SERIES INVERTER ·····	6
 1.1 PRODUCT MODEL DESCRIPTION 1.2 SAFETY PRECAUTIONS 1.3 PRODUCT SERIES 1.4 PRODUCT STANDARD SPECIFICATION 1.5 USE NOTE 	
CHAPTER 2 INVERTER INSTALLATION	15
 2.1 INSTALLATION ENVIRONMENT 2.2 MECHANICAL INSTALLATION 2.3 INVERTER SHAPE AND INSTALLATION DIMENSIONS 2.4 THE SHAPE AND MOUNTING DIMENSIONS OF THE OPERATING PANEL 	
2.5 Keyboard tray	
CHAPTER 3 WIRING OF INVERTER	19
CHAPTER 3 WIRING OF INVERTER. 3.1 CONNECTION OF THE PRODUCT AND PERIPHERAL DEVICES. 3.2 DESCRIPTION OF PERIPHERAL DEVICES FOR MAIN CIRCUIT 3.3 LECTOTYPE OF MAIN CIRCUIT PERIPHERAL DEVICES 3.4 TERMINAL WIRING 3.5 CONTROL CIRCUIT TERMINAL FUNCTION. 3.6 PERIPHERAL DEVICE SELECTION OF CONTROL CIRCUIT. 3.7 FUNCTION OF MAIN CIRCUIT TERMINAL 3.8 ATTENTION FOR MAIN CIRCUIT WIRING	
 3.1 CONNECTION OF THE PRODUCT AND PERIPHERAL DEVICES. 3.2 DESCRIPTION OF PERIPHERAL DEVICES FOR MAIN CIRCUIT 3.3 LECTOTYPE OF MAIN CIRCUIT PERIPHERAL DEVICES 3.4 TERMINAL WIRING 3.5 CONTROL CIRCUIT TERMINAL FUNCTION. 3.6 PERIPHERAL DEVICE SELECTION OF CONTROL CIRCUIT. 3.7 FUNCTION OF MAIN CIRCUIT TERMINAL 	

4.4 Keypad Operating Status 29 4.5 Panel Operation Method 30 4.6 Parameter Display 32 4.7 Motor auto-tuning procedure 33
CHAPTER 5 LIST OF PARAMETERS
5.1 FUNCTION PARAMETER TABLE
CHAPTER 6 DETAIL FUNCTION INTRODUCTION55
P0 BASIC FUNCTION PARAMETERS ······55
P1 AUXILIARY FUNCTION PARAMETERS 1 ······60
P2 AUXILIARY FUNCTION PARAMETERS 2 · · · · · · · · · · · · · · · · · ·
P3 MOTOR PARAMETERS67
P4 DEDICATD FUNCTION FOR V/F CONTROL68
P5 VECTOR CONTROL FUNTION69
P6 I/O OUTPUT TERMINAL72
P7 ANALOG INPUT TERMINAL FUNCTION ······84
P8 ANALOG OUTPUT TERMINAL······85
P9 PROGRAM OPERATING PARAMETERS ······ 87
PA PID PARAMETER89
PB TRAVERSE FUNCTION ······92
PC COMMUNICATION AND BUS CONTROL FUNCTION
PD FAULTS AND PROTECTION PARAMETERS ······94
PE FACTORY RESERVED ······98
PF FACTORY RESERVED ······99
PH DISPLAY FUNCTION ······99
CHAPTER 7 FAULT DIAGNOSIS AND TROUBLESHOOTING 102
7.1 Fault query at fault ······ 102

7.2 LIST OF FAULT AND ALARM INFORMATION	102
7.3 TROUBLESHOOTING PROCEDURES	107

CHAPTER 8 ROUTINE REPAIR AND MAINTENANCE 10	8
8.1 ROUTINE MAINTENANCE 10)8
8.2 Periodic Maintenance 10)9
8.3 COMPONENT REPLACEMENT ······ 10)9
8.4 Insulation Test ······ 10)9
APPENDIX A COMMUNICATION PROTOCOL 11	1
APPENDIX B CONTROL MODE SETTING PROCESS 12	25
PRODUCT FEEDBACK 12	26
WARRANTY AGREEMENT 12	27

Chapter 1 Introduction to HV390 Series Inverter

1.1 Product Model Description

Before unpacking the product, please check product packaging for shipping damage caused by careless transportation and whether the specifications and type of the product complies with the order. If any questions, please contact the supplier of HV390 series inverter, or directly contact the company.

Model specification.

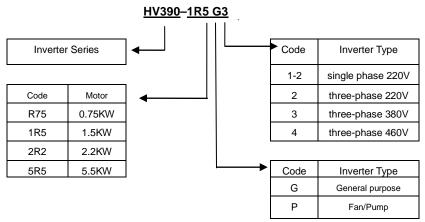
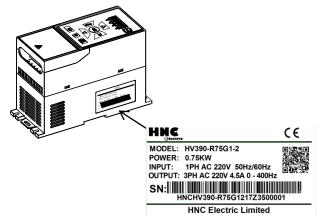



Fig. 1-1 Inverter symbol description

Below the right plate of the inverter case, a nameplate indicating the type and the rated value of the converter is attached. The contents are as follows:

1.2 Safety Precautions

Description of safety marks:

Danger: The misuse may cause fire, severe injury, even death.

Note: The misuse may cause medium or minor injury and equipment damage.

Procedure qualification

This product must be operated by trained professionals. Moreover, operations personnel must undergo professional training, familiar with equipment installation, wiring, operation and maintenance, and the correct response to the use of various emergency situations arise.

Safety guidance

A warning sign is put forward for your safety, is to prevent the operation of injuries, and take the product and related system damage measures; please read this manual carefully before use, and in strict accordance with the safety rules in this manual and warning signs for the operation.

• Proper transport, storage, installation, and careful operation and maintenance is very important for the safe operation of the converter. During the transportation and storage to ensure the inverter from shock and vibration, but also must ensure that the store in a dry, non corrosive gas, no conductive dust and environmental temperature less than 60 degrees Celsius.

• This product with the dangerous voltage, and it is under the control of the movement mechanism with potential risk, if you do not comply with the provisions of this manual or not according to the operation requirements, may cause casualties, damage to the products and related systems.

•Do not make the connection work in power on state, otherwise the risk of death caused by electric shock; in wiring, inspection, maintenance and operation, disconnect all power related equipment, and confirm the main circuit of the DC voltage has dropped to a safe level, wait 5 minutes and then carry on the related work.

•The power line, the motor line and the control line must be fastened and connected. The grounding terminal must be reliably grounded and the grounding resistance is less than 10 Omega

• The static electricity of the human body will seriously damage the internal sensitive devices, and please comply with the measures and methods stipulated in the electrostatic prevention measures (ESD) before the relevant operations, otherwise the frequency converter may be damaged

• Since the output voltage of the inverter is a pulse waveform, if the output side is equipped with capacitors to improve the power factor or lightning protection varistors, etc., be sure to remove or modify the input side of the inverter

• The output side of the inverter shall not switch devices such as circuit breakers and contactors (if the switching device must be switched on the output side, the output current of the inverter must be zero when the switch is switched on control)

No matter where the fault occurs in the control equipment, it is possible to cause a shutdown and major accidents. Therefore, please take the necessary external protection measures or backup devices
This product can only be used in accordance with the use of the manufacturer. Without permission, it shall not be used in special areas such as emergency response, rescue, ship, medical, aviation, nuclear facilities, etc.
Only the maintenance of products by the company or the company's licensing professionals, unauthorized modification, the use of non recognition of the company's accessories, may lead to product failure. In the maintenance, any defective devices must be promptly replaced.

1.3 Product Series

		9.0 p										
Pc	ower (kW)	0.4	0.75	1.5	2.2							
рс	Motor ower (kW)	0.4	0.75	1.5	2.2							
	Voltage (V)	Three-phase 0 to rated input voltage										
	Rated current (A)	2.5	4.0	7.0	10							
Output	Overload capacity	150% 1 minute	e, 180% 2 seconds, 200 time lag fe		ninutes (inverse							
	Rated voltage / frequency	Single phase 200V~240V: 50Hz/60Hz										
Input	Allowable voltage range	180V \sim 260V; Voltage imbalance: \leq 3%; Allowable frequency fluctuation										
	Rated current (A)	5.9 8.3 14.1										
	Brake unit		Built-in as s	tandard								
Pro	tection class		IP20									
Co	ooling mode	S	elf-cooling	Forced air convection cooling								

HV390-DDG1-2 Single phase AC 220V constant torque / heavy load application

HV390-DDG2 Three phase AC 220V constant torgue / heavy load application

												-				
Power (kW)		0.4	0.75	1.5	2.2	4.0	5.5	7.5	11	15	18.5	22	30	37	45	55
Motor power (kW)		0.4	0.75	1.5	2.2	4.0	5.5	7.5	11	15	18.5	22	30	37	45	55
	Voltage (V)	Three-phase 0 to rated input voltage														
Out Rated current (A)		2.5	4	7	10	16	25	32	45	60	75	90	110	152	176	210
	Overload capacity	150%	150% 1 minute, 180% 2 seconds, 200% 0.5 seconds, 10 minutes (inverse time lag feature)													

	Rated voltage / frequency		3 phase 220V±15%: 50Hz/60Hz													
Input	Allowable voltage range		220V±15%; Voltage imbalance: ≤3%; Allowable frequency fluctuation: ±5% 5.3 8.0 11.8 18.1 28.0 37.1 49.8 65.4 81.6 97.7 122 157 185.3 215.													
	Rated current (A)	4.1														
Br	ake unit			Built-in	as star	ndard				E	xternal	brakir	ng unit	need	ed	
Prote	ction class		IP20													
Cooling mode Cooli Forced air convection cooling ng																

HV390-DDDG3 Three phase AC 380V constant torque / heavy load application

Powe	er (kW)	0.75	1.5	2.2	4.(0	5.5	7.5	11	15	18.5	22	30	37	45	55	75
	Notor er (kW)	0.75	1.5	2.2	4.(0	5.5	7.5	11	15	18.5	22	30	37	45	55	75
	Voltage (V)				-		Three	phase	0 to ra	ated inp	out volt	age					
Out put	Rated current (A)	2.5	3.7	5.1	8.9	5	13	16	25	32	38	45	60	75	90	110	150
put	Overlo ad capacit y	150%	150% 1 minute, 180% 2 seconds, 200% 0.5 seconds, 10 minutes (inverse time lag feature										ture)				
	Rated voltage / frequen cy		3 phase 380V±15%; 50Hz/60Hz														
Inp ut	Allowa ble voltage range		38	30V±15	%; Vo	ltage	imbala	ince: :	≤3%;	Allowa	able fre	equenc	y fluctu	uation	: ±5%	6	
	Rated current (A)	4.3	5.2	6.0	10.	.5	15.5	20.5	27.5	37.1	41.9	49.3	65.7	80. 6	96. 4	117. 6	166.4
Bra	ake unit			В	uilt-in a	as sta	ndard					Exter	nal bra	aking u	unit ne	eded	
	otection								IP2	0							
	ooling node	Self- cooli Forced air convection cooling ng															
Powe	er (kW)	90	110	132	160	185	200	220	250	280	315	355	400	450	500	560	630
	Notor er (kW)	90	110	132	160	185	200	220	250	280	315	355	400	450	500	560	630
Out	Voltage (V) Three-phase 0 to rated input voltage																

put	Rated current (A)	170	210	250	300	340	380	415	470	520	600	650	725	820	860	950	1100
	Overlo ad capacit y	150%	50% 1 minute, 180% 2 seconds, 200% 0.5 seconds, 10 minutes (inverse time lag feature)														
	Rated voltage / frequen cy						3 ph	ase 38	0V±15	%; 50	Hz/60I	Ηz					
Inp ut	Allowa ble voltage range		380V±15%; Voltage imbalance: ≤3%; Allowable frequency fluctuation: ±5%														
	Rated current (A)	184. 3										1150					
Bra	ake unit		External braking unit needed														
Pro	tection		IP20														
C	class																
	ooling node	5															

*Note: HV390-185G3 and above products are equipped with external DC reactor as standard.

	/390−□		4 I N	ree p	mase	a AC	, 400	v co	nsta	nt to	rque	/ ne	avy	ioau	app	JIICa	tion
Power	• (kW)	0.75	1.5	2.2	4.	0	5.5	7.5	11	15	18.5	22	30	37	45	55	75
	otor (kW)	0.75	1.5	2.2	4.	0	5.5	7.5	11	15	18.5	22	30	37	45	55	75
	$\begin{array}{c} \text{Voltag} \\ \text{e} \ (\text{V}) \end{array}$						Three	-phase	e 0 to ra	ated in	put vol	tage					
Out put	Rated current (A)	2.5	3.7	5.0	8		11	15	22	27	34	40	55	65	80	100	130
F	Overlo ad capacit	150%	5 1 m	inute,	180%	2 se	econds	, 200	0% 0.	5 seco	nds, ʻ	0 mini	utes (ir	verse	time	lag fea	ature)
	Rated voltage / freque ncy	voltage / 3 phase 460V±15%: 50Hz/60Hz freque ncy															
Input	Allowa ble voltage range		460V±15%; Voltage imbalance: \leq 3%; Allowable frequency fluctuation: ±5%														
	Rated current (A)	4.1	4.9	5.7	9.	4	12.5	18.3	23.1	29.8	35.7	41.7	57.4	66. 5	81. 7	101. 9	137.4
Brak	ke unit	Built-in as standard External braking unit needed															
	ection ass	IP20															
Coolir	ng mode	Self -coo ling	-coo														
Power	• (kW)	90	110	132	160	185	200	220	250	280	315	355	400	450	500	560	630
	otor (kW)	90	110	132	160	185	200	220	250	280	315	355	400	450	500	560	630
	Voltag e (V)						Three	-phase	e 0 to ra	ated in	put vol	tage					
Out put	Rated current (A)	147	180	216	259	300	328	358	400	449	516	570	650	700	800	900	100 0
pui	Overlo ad capacit y	150%	150% 1 minute, 180% 2 seconds, 200% 0.5 seconds, 10 minutes (inverse time lag feature)														
	Rated voltage / freque ncy						3 ph	ase 46	60V±15	%; 50)Hz/60	Hz					
Input	Allowa ble voltage range		46	60V±1	5%; Vo	oltage	imbali	ance:	≤3%;	Allow	able fr	equenc	cy fluct	uation	1: ±5%	%	
	Rated current (A)	151. 8	216	220. 7	264. 2	309 .4	334. 4	363. 9	407. 9	457. 4	533. 2	623. 3	706. 9	760	865	970	1100
Brak	ke unit						E	xternal	brakin	g unit ı	needeo	1					

HV390-DDG4 Three phase AC 480V constant torque / heavy load application

Protection class	IP20
Cooling mode	Forced air convection cooling

*Note: HV390-185G4 and above products are equipped with external DC reactor as standard.

1.4 Product standard specification

	Item	Specifications
power	Voltage frequency	single-phase 220V50/60Hz, three-phase 380V 50/60Hz
ponoi	Allowable fluctuation	voltage: ±15%, frequency: ±5%
	Frequency range	0-600Hz
	Output frequency	The maximum frequency value ±0.1%
	Output frequency	Operate keyboard up and down keys: 0.01Hz Potentiometer analog input: 0.2Hz
	Run command given	The keyboard is given; the external terminal is given; the serial port is given by the
	mode	host computer
	carrier frequency	2.0-12.0KHz
	Torque boost	0~20.0% adjustable, optional v/f curve optional
	overload capacity	150% rated output current 1 minute, 180% rated output current 2 second
	Acc/Dectime	0.1~3600 second
	Rated output voltage	Using the power supply voltage compensation function, the motor rated voltage is
		100%, which can be set in the range of 50-100% (the output can not exceed the
		input voltage)
Control	AVRadjustment function	When the network voltage fluctuates, the output voltage fluctuation is very small and
perfor		almost constant V/F
mance		PID control, acceleration and deceleration time is adjustable, variable deceleration
		mode, carrier frequency, torque, current limiting, power off, restart, jump frequency
	standard feature	control, lower frequency running, multi speed, swing frequency, RS485, analog
		output, fault slip compensation, automatic reset
	braking	Energy consumption braking, DC braking
		Keyboard digital setting, external terminal AI1 (0-10V/0-20mA switchable), AI2
	Frequency setting input	(0-10V/0-20mA switchable), RS485 and signal combination and terminal selection
	Signal feedback input	External terminal Al1 (0-10V/0-20mA switchable), Al2 (0-10V/0-20mA switchable), RS485
	Input instruction signal	Start, stop, reverse, inching, multi segment speed, free parking, reset, acceleration
		and deceleration time selection, frequency setting, channel selection, external fault alarm, etc.

	External output signal	Relay output, collector output, 0-10V output, 4-20mA output			
protective function		Overvoltage, undervoltage, overcurrent, current limit, overload, overheating, electronic thermal overload relay, overvoltage stall, data protection, etc.			
Four digit display (LED)		15 kinds of parameters, such as frequency setting, output frequency, output voltage, output current, motor speed, output torque, digital value terminals, program menu parameters and 33kinds of Fault codes			
	indicator lamp (LED)	Run/stop status, etc.			
Operat	Environment	Inside, low than 1000m, free from dust, corrosive gas and direct sunlight			
ing	Ambient temperature	-10°C~+40°C (bare machine -10°C~+50°C), 20%~90%RH (no condensing)			
	Vibration	less than 0.5g			
enviro	Storage temperature	-25℃~+65℃			
nment		Wall mounted or surface mounted inside a cabinet			
Protection class		IP20			
Cooling		Forced air cooling.			

1.5 Use note

The design of the inverter allows it to operate in an industrial environment with electromagnetic interference. Usually, if the quality is good, it can ensure the safety of inverter and trouble free operation, please install to ensure the inverter can run reliably and effectively avoid the electromagnetic interference caused by the following rules.

•Ensure that the grounding cable of all control devices are connected to the inverter as transducer with short and thick, reliably connected to public places or public star connection grounding bus motor; please contact the nearest ground, please do not put the shell of the motor is connected to the earthing terminal or inverter control system protection.

•When the equipment is not grounded, the contact leakage occurs. Please connect the grounding end of the inverter to the equipment shell and motor shell, and the single phase 220V converter N terminal must be connected to zero line

•Conductors are preferably flat and multicore because they are less impedance at high frequencies

•The ends of the truncated cables should be as neat as possible to ensure that the segments are as short as possible

•Control cable wiring should be far away from the power supply cables and the motor cable, use wire slot alone, and must be in power cables and the motor cable when crossing each other should adopt 90 degrees vertical cross.

•The cabinet is installed to ensure the contactor with a surge suppressor. Or, there is a 'R-C' damping circuit is connected to the coil of AC contactor, the use of varistor and corresponding coil voltage; the coil DC contactor is connected with a "freewheeling diode" or coil device voltage corresponding to the type of varistor; the output control relay in inverter contactor contactor occasions and frequent action, this is especially important.

•The connection wire of the motor shall be shielded cable or armored cable, and the grounding end of the shielding layer can be reliably grounded by the cable grounding card

•Install "input noise filter" can reduce the electromagnetic interference brought from the grid side of other equipment, the input side noise filter "must be as close as possible to the inverter power input terminal, at the same time, with the same inverter filter must be reliable grounding.

•Install "the output side filter can reduce noise" wireless interference from the motor and the inductive interference, "the output side filter noise" must be as close as possible to the inverter output terminals, at the same time, with the same inverter filter must be reliable grounding.

•Shielded cable or twisted pair shall be used whenever the control loop is connected

•Adding the "zero phase reactor" in the power line near the inverter input terminal, adding the "zero phase reactor" in the motor line near the inverter output terminals, adding "zero phase reactor" in the control line near the inverter control terminal, can effectively reduce the electromagnetic interference and the main power cable connected inverter induction.

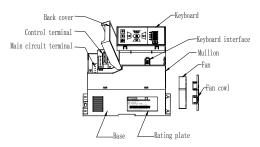
•Grounding, correct and reliable grounding are the basic conditions for the safe and reliable operation of this product. In order to properly connect the converter to the ground, please read the following cautions carefully

	•To avoid electric shock, please use the dimensions specified in the electrical equipment technical standard, and shorten the wiring length as much as possible, and the grounding resistance is below 10 Omega.Otherwise, the leakage current caused by						
	the inverter will lead to the unstable potential of the grounding terminal far from the grounding point, which will lead to an electric shock accident						
	•Do not share the ground wire with the welder or power equipment that requires high						
	current / pulse current, otherwise it will cause abnormal operation of the inverter						
	•When using multiple inverters, do not loop the ground. Otherwise, the inverter will act						
	abnormally						
	•The motor must be grounded independently, and the motor casing can not be						
Causion	connected to the ground terminal of the converter, nor can the same ground network be						
	shared with the control system						

Chapter 2 Inverter Installation

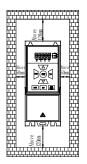
To ensure the safe use of this product, to maximize the performance of the inverter and to ensure the reliable operation of the inverter, please strictly follow the environment, wiring, ventilation and other requirements described in this chapter

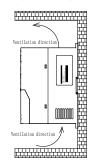
2.1 Installation environment


In order to give full play to the performance of this product and maintain its function for a long time, the installation environment is very important. Please install this product in the environment that meets the requirements shown in the following table

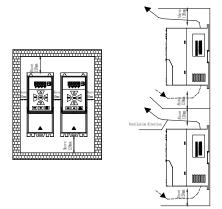
Environment	Requirement					
Installation	Installation indoor without direct sunlight					
environment						
Work temperature	$-10 \sim +40^{\circ}$ C					
Storage	$-20 \sim +60^{\circ}$ C					
Temperature						
Environment	No condensation under 95%RH					
temperature						
	Please install the inverter in the following places:					
	•No oil fog, corrosive gas, flammable gas, dust and other places;					
	•Metal powder, oil, water and other foreign matter will not enter the frequency					
Ambient	converter inside the place (do not install the frequency converter on wood and other					
environment	flammable substances above);					
environment	•A place where radioactive substances are not flammable;					
	•A place where no noxious gas or liquid is found;					
	•A place where little salt is eaten;					
	•A place where there is no direct sunlight					
Height above sea	Below 1000m					
level						
Vibration	Below 10~ 20Hz: 9.8m/s2					

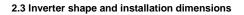
	Below 20~55Hz:5.9m/s2
	•The inverter shall not be installed horizontally or horizontally, and vertical and
lasts listing and	vertical installation must be guaranteed;
Installation and	•High resistance heating equipment such as braking resistance, please install
cooling	independently, avoid and inverter installed in the same cabinet, it is strictly prohibited
	to brake resistance and other high heating equipment installed in the inverter inlet

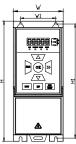

2.2 Mechanical installation


•HV390 series inverter components

•Installation space, direction and space

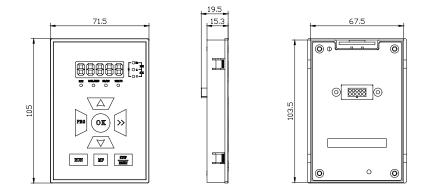

Installation: single frequency governor to install in indoor ventilated place, and a wall hanging cabinet type or vertical installation. And with the adjacent items or baffle (wall) must keep enough space.




installation diagram of single inverter

Multiple installation: when installing multiple inverters in the control cabinet, please ensure the following installation space

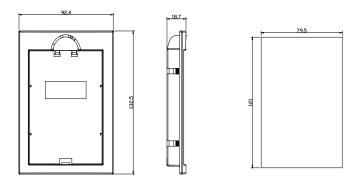
Installation diagram of multi inverters



Voltage		Outline construction and installation dimension (mm)						
level	Inverter model	w	н	D	W1	H1	Mounting hole d	ht (kg)
	HV390-R40G1-2							
single	HV390-R75G1-2	78	188	126	55	178	4	1.5
phase	HV390-1R5G1-2							
220V	HV390-2R2G1-2	96	225	137	65	215	4	2
	HV390-R40G2							
Three	HV390-R75G2	78	188	126	55	178	4	1.5
-phase	HV390-1R5G2							
220V	HV390-2R2G2	96	225	137	65	215	4	2
	HV390-004G2	90	225	137	05	215	4	2
Three	HV390-R40G3							
-phase	HV390-R75G3	78	188	126	55	178	4	1.5
380V	HV390-1R5G3							

	HV390-2R2G3							
	HV390-004G3	00	96 225	407	65	215	4	0
	HV390-5R5G3	96		137				2
	HV390-R40G4 HV390-R75G4			126		55 178	4	1.5
		70	400					
Three	HV390-1R5G4	78	188		55			
-phase 460V	HV390-2R2G4							
	HV390-004G4	00	005	407	05	215	4	2
	HV390-5R5G4	96	225	137	65			2

2.4 The shape and mounting dimensions of the operating panel (unit: mm)



Keyboard (HV390-DP01)

Rear view of Keyboard

2.5 Keyboard tray

HV390-DP03 is the operation panel to install plate cabinet use, its shape and size are as follows:

Chapter 3 Wiring of Inverter

3.1 Connection of the Product and Peripheral Devices

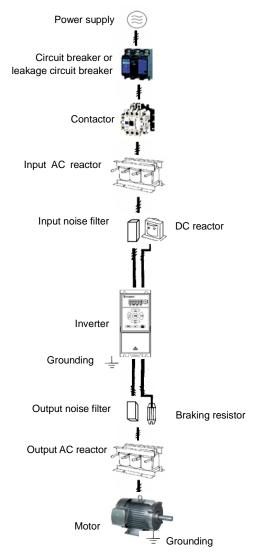
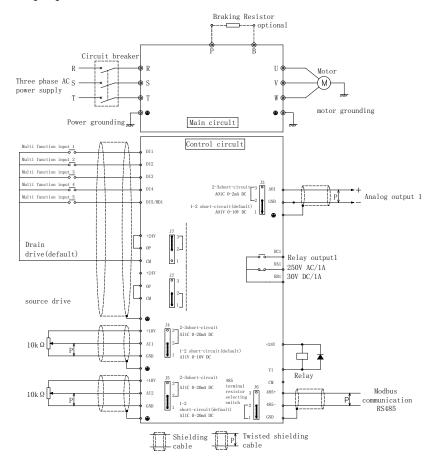


Fig.3-1 Connection diagram of the product and peripheral devices

3.2 Description of Peripheral Devices for Main Circuit

Circuit breaker	The capacity of the circuit breaker shall be 1.5 ~ 2 time of the rated current of the inverter. The time features of the circuit breaker shall fully consider the time features of the inverter overload protection.
Leakage circuit breaker	Because the inverter output is the high-frequency pulse, there will be high-frequency leakage current. Special leakage circuit breaker shall be used when installing leakage circuit breaker at the input end of the inverter. It is suggested that B type leakage circuit breaker be used, and the leakage current value shall be set as 300mA.
Contactor	Frequent open and close of contactor will cause inverter failure, so the highest frequency for the open and close of contactor shall not exceed 10 times/min. When braking resistor is used, to void the overtemperature damage of the braking resistor, thermal protection relay with braking resistor overtemperature detection shall be installed to disconnect the contactor at the contact control power side of the thermal protection relay.
Input AC reactor or DC reactor	 The inverter power supply capacity is more than 600kVA or 10 times of the inverter capacity. If there is switch type reactive-load compensation capacitor or load with silicon control at the same power node, there will be high peak current flowing into input power circuit, causing the damage of the rectifier components. When the voltage unbalancedness of the three-phase power supply of the inverter exceeds 3%, the rectifier component will be damaged. It is required that the input power factor of the inverter shall be higher than 90%. When the above situations occur, install the AC reactor at the input end of the inverter or DC reactor to the DC reactor terminal.
Input noise filter	The noise input from the power end to the inverter and output from the inverter to the power end can be reduced.
Thermal protection relay	Although the inverter has motor overload protection function, when one inverter drives two or more motors or multi-pole motors, to prevent the motor overtemperature failure, thermal protection relay shall be installed between the inverter and each motor, and the motor overload protection parameter Pd.00 shall be set as "2" (motor protection disabled).
Output noise filter	When the output end of the inverter is connected with noise filter, the conduction and radiation interference can be reduced.
Output AC reactor	When the cable connecting the inverter and the motor is longer than 100m, it is suggested to install AC output reactor to suppress the high-frequency oscillation to avoid the damage to motor insulation, large leakage current and frequent inverter protective action.

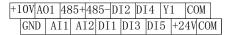
3.3 Lectotype of Main Circuit Peripheral Devices


	Circuit	Circuit		BRSTU	vw	Grounding terminal PE		
Inverter model	Breake (A)	Contactor (A)	Terminal screw	Tightenin g torque (N∙m)	Wire specific ation (mm ²)	Termina I screw	Tightening torque (N⋅m)	Wire specific ation (mm ²)
HV390-R40G1/G2	16	10	M4	1.2~1.5	2.5	M4	1.2~1.5	2.5
HV390-R75G1/G2	25	16	M4	1.2~1.5	2.5	M4	1.2~1.5	2.5
HV390-1R5G1/G2	32	25	M4	1.2~1.5	4	M4	1.2~1.5	2.5
HV390-2R2G1/G2	40	32	M4	1.2~1.5	6	M4	1.2~1.5	4
HV390-R75G3	10	10	M4	1.2~1.5	2.5	M4	1.2~1.5	2.5
HV390-1R5G3	16	10	M4	1.2~1.5	2.5	M4	1.2~1.5	2.5

HV390 High Performance	Vector Co	ontrol Inverter	User Manual
------------------------	-----------	-----------------	-------------

HV390-2R2G3	16	10	M4	1.2~1.5	2.5	M4	1.2~1.5	2.5
HV390-004G3	25	16	M4	1.2~1.5	4	M4	1.2~1.5	4
HV390-5R5G3	32	25	M4	1.2~1.5	6	M4	1.2~1.5	6
HV390-7R5G3	40	32	M4	1.2~1.5	6	M4	1.2~1.5	6
HV390-011G3	63	40	M5	2.5~3.0	6	M5	2.5~3.0	6
HV390-015G3	63	63	M5	2.5~3.0	6	M5	2.5~3.0	6
HV390-018G3	100	63	M6	4.0~5.0	10	M6	4.0~5.0	10
HV390-022G3	100	100	M6	4.0~5.0	16	M6	4.0~5.0	16
HV390-030G3	125	100	M6	4.0~5.0	25	M6	4.0~5.0	16
HV390-037G3	160	100	M8	9.0~10.0	25	M8	9.0~10.0	16
HV390-045G3	200	125	M8	9.0~10.0	35	M8	9.0~10.0	16
HV390-055G3	315	250	M10	17.6 \sim	50	M10	14.0~15.0	25
HV390-075G3	350	330	M10	17.6~	60	M10	14.0~15.0	35
HV390-090G3	315	250	M10	17.6~ 22.5	70	M10	14.0~15.0	35
HV390-110G3	350	330	M10	17.6~ 22.5	100	M10	14.0~15.0	50
HV390-132G3	400	330	M12	31.4~ 39.2	150	M12	17.6~22.5	75
HV390-160G3	500	400	M12	31.4~ 39.2	185	M12	17.6~22.5	50×2
HV390-200G3	630	500	M12	48.6~ 59.4	240	M12	31.4~39.2	60×2
HV390-220G3	800	630	M12	48.6~ 59.4	150×2	M12	31.4~39.2	75×2
HV390-280G3	1000	630	M12	48.6~ 59.4	185×2	M12	31.4~39.2	100×2
HV390-315G3	1000	800	M14	48.6~ 59.4	250×2	M14	31.4~39.2	125×2
HV390-355G3	1200	800	M14	48.6~ 59.4	325×2	M14	31.4~39.2	150×2
HV390-400G3	1500	1000	M14	48.6~ 59.4	325×2	M14	31.4~39.2	150×2

3.4 Terminal wiring


This section describes all the precautions and requirements that ensure the user's safe use of the product, maximize the performance of the inverter, and ensure the reliable operation of the inverter. The standard wiring diagram is as follows:

Note: Analog output is frequency, current, voltmeter and other instructions for specific output, can not be used for feedback and other control operations

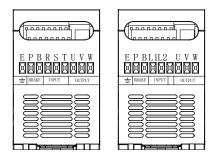
3.5 Control circuit terminal function

3.5.1 Control loop terminal line

RA1 RB1 RC1

3.5.2 Control circuit terminal instruction

Туре	Terminal sign	Terminal Name	Function Description
			Provide +10V power supply for external units, with maximum
			output current of 10mA.
	+10V-GND	External terminal of 10V power supply	It is generally used as the operating power supply for the
			external potentiometer.
			The potentiometer resistance range is $1k\Omega$ to $5k\Omega$.
Power			Provide +24V power supply for external units. It is generally
supply	+24V-COM	External terminalof24V	used as the operating power supply for digital input/output
	+240-00101	powersupply	terminal and the external sensor.
		pencieappiy	Maximum output current: 200mA
		External power input	When using external signal to drive DI1~DI5,OP should be
	OP	terminals	connected to external power supply, The factory defaults (J7)
			to the 24V connection
	AI1-GND	Analog input	1. Input voltage range: DC 0V ~ 10V /4mA ~ 20mA, chosen
		Analog input terminal 1	by jumper J4 on control board.
Analog			2. Input impedance: $22k\Omega$ of voltage input, 500Ω of current input.
input			1.Inputrange: DC 0V~10V/4mA~20mA, chosen by jumper
		Analog input	J5 on control board
	AI2-GND	terminal 2	2.Inputimpedance: $22k\Omega$ of voltage input, 500 Ω of current
			input.
	DI1-OP	Digital Input 1	1. Opticalcouplingisolation, bipolar input.
	DI2-OP	Digital Input 2	2. Input impedance: $4.7k\Omega$.
	DI3-OP	Digital Input 3	3. Electrical level input range: 9V~30V.
Digital	DI4-OP	Digital Input 4	
Input	DI5-OP	Digital Input 5	Input impedance: 2.4 kΩ.
	HDI	High-speed pulse input terminal	DI5 can be used as high-speed pulse input channel.
	DI5-OP	(Optional)	Maximum input frequency: 100kHz.
			The voltage or current output is determined by jumper J3 on
Analog		Applag output 1	the control panel.
output	AO1-GND	Analog output 1	Output voltage range: 0V to 10V Output current range: 0mA
			to 20mA.
Digital	Y1-COM	Digitaloutput 1	Optical coupling isolation, dual polarity open collector output.


Output		(High-speed	Output voltage range: 0V to 24V Output current range: 0mA
		pulseoutput)	to 50mA
		(Optional)	
Relay	RB1-RA1	Normally closed	
output1	RB1-RC1	Normally open	Contact driving capacity: AC250V, 3A, COSø=0.4
terminal 485	485+	485Positive signal of differential signal	Rate: 1200/2400/4800/9600/19200/38400 Up to 32 units at most, more than 32 units, use repeatersThe longest distance 500m (shielded twisted pair cable using standard) J6: 485Terminal resistance selection: ON is a 100 Omega terminal resistor, OFF is no terminal resistance
485	485-	485Negative side of differential signal	
	GND	485Shielding GND of communication	Internal isolation from COM

NOTE: * If the user adjustable potentiometer in + 10V and GND, potentiometer resistance should not be less than 5K Omega

3.6 Peripheral device selection of control circuit

Terminal number	Terminal screw	tightening torque (N·m)	AWG mm ²	Types of wires
+10V、AO1、485+、485-、DI2、DI4、 Y1、COM	M3	0.5~0.6	0.75	Double glue shielded cable
GND、AI1、AI2、DI1、DI3、DI5、+24V、 COM	M3	0.5~0.6	0.75	shielded cable

3.7 Function of main circuit terminal

HV390-R40G1-2~HV390-1R5G1-2 HV390-R75G3~HV390-2R2G3

E	РВ ØØ	rst MMM	uvw MAM	E	P X
÷	BARKE	INPUT	OUTPUT	÷	В.

HV390-R40G1-2~HV390-1R5G1-2

HV390-R75G3~HV390-2R2G3

Terminal symbol	Terminal name and function description
R、S、T(L1、L2)	Three (single) phase current input terminals
Ρ、Β	Braking resistor connecting terminal
U, V, W	Three phase AC output terminal
E	Ground terminal PE

3.8 Attention for Main Circuit Wiring

3.8.1 Power Supply Wiring

- It is forbidden to connect the power cable to the inverter output terminal, otherwise, the internal components of the inverter will be damaged.
- To facilitate the input side overcurrent protection and power failure maintenance, the inverter shall connect to the power supply through the circuit breaker or leakage circuit breaker and contactor.
- Please confirm that the power supply phases, rated voltage are consistent with that of the nameplate, otherwise, the inverter may be damaged.

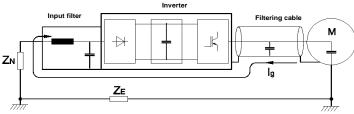
3.8.2 Motor Wiring

- It is forbidden to short circuit or ground the inverter output terminal, otherwise the internal components of the inverter will be damaged.
- Avoid short circuit the output cable and the inverter enclosure, otherwise there exists the danger of electric shock.
- It is forbidden to connect the output terminal of the inverter to the capacitor or LC/RC noise filter with phase lead, otherwise, the internal components of the inverter may be damaged.
- When contactor is installed between the inverter and the motor, it is forbidden to switch on/off the contactor during the running of the inverter, otherwise, there will be large current flowing into the inverter, triggering the inverter protection action.
- Length of cable between the inverter and motor

If the cable between the inverter and the motor is too long, the higher harmonic leakage current of the output end will cause adverse impact on the inverter and the peripheral devices. It is suggested that when the motor cable is longer than 100m, output AC reactor be installed. Refer to the following table for the carrier frequency setting.

Length of cable between the inverter and motor	Less than 50m	Less than 100 m	More than 100m
Carrier frequency (P2.30)	Less than 15kHz	Less than 10kHz	Less than 5kHz

3.8.3 Grounding Wiring


- The inverter will produce leakage current. The higher the carrier frequency is, the larger the leakage current will be. The leakage current of the inverter system is more than 3.5mA, and the specific value of the leakage current is determined by the use conditions. To ensure the safety, the inverter and the motor must be grounded.
- The grounding resistance shall be less than 10ohm. For the grounding wire diameter requirement, refer to 3.3 lectotype of main circuit peripheral devices.
- Do not share grounding wire with the welding machine and other power equipment.

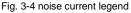

• In the applications with more than 2 inverters, keep the grounding wire from forming a loop.

Fig. 3–3 Grounding wiring

3.8.4 Countermeasures for Conduction and Radiation Interference

- When the input noise filter is installed, the wire connecting the filter to the inverter input power end shall be as short as possible.
- The filter enclosure and mounting cabinet shall be reliably connected in large area to reduce the back flow impedance of the noise current lg.
- The wire connecting the inverter and the motor shall be as short as possible. The motor cable adopts 4-core cable, with the grounding end grounded at the inverter side, the other end connected to the motor enclosure. The motor cable shall be sleeved into the metal tube.
- The input power wire and output motor wire shall be kept away from each other as long as possible.
- The equipment and signal cables vulnerable to influence shall be kept far away from the inverter.
- Key signal cables shall adopt shielding cable. It is suggested that the shielding layer shall be grounded with 360-degree grounding method and sleeved into the metal tube. The signal cable shall be kept far away from the inverter input wire and output motor wire. If the signal cable must cross the input wire and output motor wire, they shall be kept orthogonal.
- When analog voltage and current signals are adopted for remote frequency setting, twinning shielding cable shall be used. The shielding layer shall be connected to the grounding terminal PE of the inverter, and the signal cable shall be no longer than 50m.
- The wires of the control circuit terminals RA/RB/RC and other control circuit terminals shall be separately routed.
- It is forbidden to short circuit the shielding layer and other signal cables or equipment.
- When the inverter is connected to the inductive load equipment (e.g. electromagnetic contactor, relay and solenoid valve), surge suppressor must be installed on the load equipment coil, as shown in Fig.3-5.

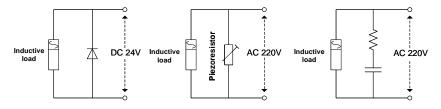


Fig.3-5 Application of inductive load surge suppressor

Chapter 4 Keyboard Operation

4.1 Keyboard introduce

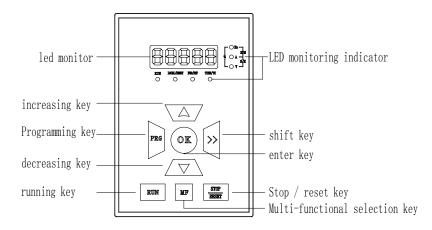


Figure 3 - 1 Keyboard (HV390-DP01)

4.2 Descriptions of Indicators

Indicator sign		Meanings	
Indicator sign	name Meanings		Color
LOCAL/REMOT	Running command reference mode indicator	off: Running command is given by keyboard on: Running command is given by terminal operation Flashing: Running command is given by host computer	red
RUN	Running status ON : running state indicator OFF : stop state Flashing : stopping state		green
FWD/REV	Positive and negative indicator light	ON : forward running OFF : reverse running	red
TUNE/TC	Tuning/Fault indicator	ON : Fault condition OFF : Normal conditio	red
Hz	Frequency indicator	ndicator ON : Current display parameter is running frequency	

А	Current indicator	ON : Current display parameter is current	red
V	Voltage indicator	ON : Current display parameter is voltage	red
RPM (Hz+A)	Rotating speed	ON : Current display parameter is rotating speed	red
S/M (A+V)	Time indicator	ON : Current display parameter is time	red
% (Hz+V)	% indicator	ON : Current display parameter is percentage	red

4.3 Button description of Keyboard

Sign	Name	Function
PRG	Programming key PRG	 Switch between program and other states, which includes parameters display and programming; In menu status, press this key to return previous menu.
ОК	EnterOK	 In program status, press this key to enter next menu. In menu level 3, press this key to save parameters value.
	Increase∧	 In first level menu, increase function code PX according to edit bit In second level menu, increase the function code PX YZ data. In third level menu ,Increase the function code data
▼ Decrease V		 In first level menu, decrease function code PX according to edit bit In second level menu, decrease the function PX YZ code data In third level menu ,decrease the function code data
>>	Shift>>	 In third level menu , use key >> to shift edit bit of the data In stop/run status, switch the panel display parameters such as frequency, current and voltage.
RUN	Run Key <mark>RUN</mark>	 When running command is given via operation panel, the key is used to control the start of inverter. After setting the parameter auto tuning,start parameter auto tuning for inverter startup
STOP /RESET	Stop/Reset Key <mark>STOP/RESET</mark>	 When running command is given via operation panel, the key is used to control the stop of inverter. When the inverter has fault and has stopped, this key is used as RESET key to clear the fault alarm.
MF	Multi-functionMF	0: Nonfunction; 1: forwardpoint running.;2: reverse

4.4 Keypad Operating Status

4.4.1 Initialization after power on

When the power is switched on, panel will start 5 seconds' initiation process. During this process, LED displays "8.8.8.8.", and all LED indicators on the panel are in ON state

4.4.2 Stopping State

In stopping state, LED displays default parameters in flashing mode, and the unit indicator in right side displays the unit of this parameters. In this state, all status indicators are OFF, press **>>** key ,LED displays fault code"n-xx"(xx=00-08),pressSET key to enter and view the parameter; press **PRG** key to exit; and press **>>** key to scroll through parameters in stopping state.

4.4.3 Running state

In stopping state, after receiving running command, the drive enters running state. The LED and unit indicator display parameter and its unit respectively.

At this time, running status indicator is ON all the time. Press PRG key to enter programming menu and view parameter value.

Press ►► key, LED displays running parameter "r-xx" (xx=00~14). Press SET key to enter and view parameter value; press PRG key to exit this parameter menu; press ►► key to scroll through monitoring parameters.

4.4.4 Fault alarm state

In stopping, running or programming state, correspondent fault information will be reported if fault is detected. At this time, LED displays the fault code in flashing mode. When fault alarm occurs, press PRG key to enter programming menu and look up the fault log.

When fault alarm occurs, the alarm picture is displayed, and the fault can be reset by press STOP/RESET key. The drive restores to normal operation upon clearing the fault, and the fault code is displayed again if the fault has not been cleared.

4.5 Panel Operation Method

4.5.1 Panel Operation Procedure

Parameter setting method via panel: through three-level menu, users can look up and modify the function codes very easily.

Three level menu structure: function parameters (first level)→function codes(second level)→value of function code(third level). Operation process is shown in Fig.4-1.

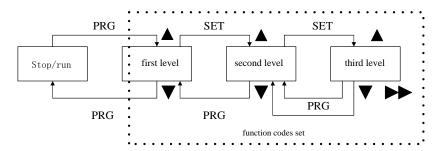


Fig.4-1 Menu Operation Procedure

In the third level menu, user can return second level menu by pressing PRG key or SET key. The difference is: Parameter settings can be saved in control board if SETkey is pressed, then LED returns to second level menu and shifts to next function code automatically; If user presses PRG key, LED returns to second level menu directly, but the parameters can not be saved and stop at current function code.

4.5.2 Parameter setup

Setting parameters correctly is a premise for actualizing HV390's performances. Parameter setting method via panel will be introduced in the following part with rated power as an example (Change 18.5kW into 7.5kW).

Operation process is shown in Fig.4-2. Press the SHIFT key with single direction shifting function to shift the flashing bit of parameters (that is modification bit). After finishing the parameters setup, press the MENU key twice to exit programing state.

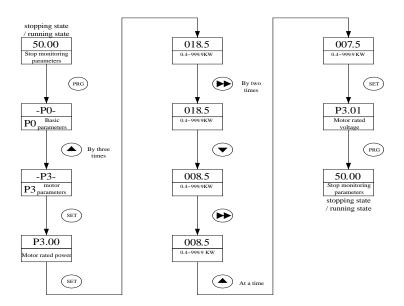


Fig 4-2 Procedure of parameter setup

4.6 Parameter Display

In stopping state or running state, various state parameters can be displayed by LED. The displayed parameters can be decided by PH.00 ~ PH.01 and can be scrolled through by pressing the SHIFT key. The following is an explanation for the parameters operation method in stopping and running state.

4.6.1 Switch of Parameter Display in Stopping State

In stopping state, the drive has 9 state parameters which can be scrolled by **>>** key, they are: frequency setting, external counting value, digital value input terminal state, digital value output terminal state, panel potentiometer, analog input Al1, analog input Al2 and DC bus voltage. Please refer to the explanation of PH.01.

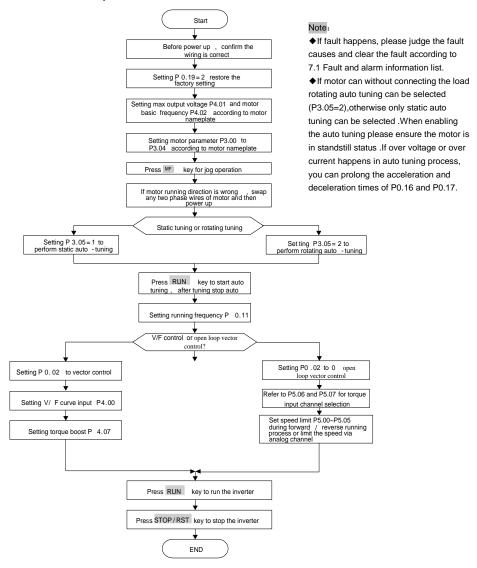
The default value of PH.01 is "preset frequency". If PH.01 value is set to 2, default display parameter in stopping state will be changed into "DC bus voltage".

User can look up other parameters during stopping state by pressing ►► key: Everytime you press ►► key, the next parameter in stopping state will be displayed.

4.6.2 Switch of the running parameters

In running state, maximum 15 running state parameters can be displayed by HV390 drive via **>>** key.

4.7 Motor auto-tuning procedure


Before selecting vector control mode, user should input motor parameters correctly. HV390 drive can get motor's standard parameters according to the parameters on nameplate; In order to get better control performance, you can control the drive to perform auto-tuning on the motor, so as to get accurate motor parameters. Tuning is divided into static tuning and overall auto- tuning. If the motor and load cannot be completely removed, p3.05 =1 shall be set for static tuning. The steps of tuning are as follows:

- 1. Set P0.01= 0 to select panel running command control mode;
- 2. According the motor's name-plat, Set P3.00、P3.01、P3.02、P3.03、P3.04 parameter in proper order。
- 3. Set P3.05=1, Slect static auto- tuning, Or set P3.05 = 2, Slect overall auto- tuning , Press"SET"key.
- 4. Press "run" and the keyboard displays "- id-" and starts tuning for 1-2 minutes.

5 After the tuning is finished, the machine is automatically stopped and the motor parameters are automatically saved.

4.8 Running for the First Time

Please follow the procedures to run the inverter for the first time:

Chapter 5 List of Parameters

Meanings of Each Item in Function Code Parameter Table

Item	Meanings
Function code number	The number of function code, such as P0.00
Function code name	he name of function code, which explains the function code's meanings.
Function code selection	Function code parameter setting list
default value	Restore the settings of the function code after the product is delivered (see P0.19).
Order number	The order number of function code
Property	#: This function code can be changed during operation; +: This function code can only be changed during stopping status; *: The setting of this function code is read-only and cannot be changed.

5.1 Function Parameter Table

Function	Name	Description	Factory	Order	Property
code			setting	numbe	
				r	
P0 Group					
P0.00	reserved			0	*
P0.01	Running command	0: keyboard operation	0	1	
	selection	1: External terminal			+
		2: Commuincation			
P0.02	Control mode	0: open loop vector control	1	2	
		1: V/F control			+
P0.03	Main Frequency	0: digital set via the keyboard	0	3	
	Source	1: Reserved			
		2: External analog signal AI1(0~10V)			
		3: External analog signal AI2(0~20mA)			
		4: up/down1 setting			+
		5: up/down2 setting			
		6: Multistage speed			
		7: PID			
		8: Serial communication setting			

		9: Program run			
P0.04	Main frequency	0.000-9.999	1.000	4	
	setting gain K1				+
P0.05	Zero frequency	0: Reserved	0	5	
	source of	1: Digital frequency of P0.11			
	multi-speed mode	2: External analog signal:Al1			+
		3: External analog signal:AI2			
		4: Communication given			
P0.06	Auxiliary frequency	0: External analog signal Al1(0~10V)	0	6	
1 0.00		1: External analog signal AI2(0~20mA)	Ũ	Ŭ	
	setting option	2: External analog signal AI1(0~10V) (+/-			
		polarity)			
		3: External analog signal Al2(0~20mA) (+/-			+
		polarity)			
		4: PID			
		5: Keyboard Increase and decrease key			
P0.07	Auxiliary frequency	0: Relative maximum frequency	0	7	
	range selection	1: Relative primary given			+
P0.08	Auxiliary frequency	0-100%	100	8	
	setting range				+
P0.09	Setting Frequency	0: Main frequency	0	9	
	selection	1: Auxiliary frequency			
		2: Main frequency + Auxiliary frequency			
		3: Main frequency - Auxiliary frequency			
		4: switch between Main frequency and			
		Auxiliary frequency			
		5: switch between Main frequency and			
		(Main frequency + Auxiliary frequency)			+
		6: switch between Main frequency and			
		(Main frequency - Auxiliary frequency)			
		7: MAX (Main frequency, Auxiliary			
		frequency)			
		8 : MIN (Main frequency , Auxiliary			
		frequency)			
		9: Traverse operation			

		1	1	1	
P0.10	UP/DOWN setting	0: Store	0	10	#
	store selection	1: Not Store			T T
P0.11	Digital frequency	0~600.0Hz	50.00	11	
	setting				#
P0.12	Rotating direction	0: FWD	0	12	
	(Keypad operation)	1: REV			+
P0.13	Maximum output	50.00~600.0 Hz	50.00	13	
	frequency				+
P0.14	High frequency limit	0.00 Hz ~ Maximum output frequency	50.00	14	+
P0.15	Low frequency limit	0.00Hz~ High frequency limit	0	15	+
P0.16	Acc time 1	0.1~3600.0s	20.0	16	#
P0.17	Dec time 1	0.1~3600.0s	20.0	17	#
P0.18	reserved		0	18	+
P0.19	Parameter	0: No operation	0	19	
	initialization	1: Clear fault information			
		2: Recover factory setting			
		3. Lock parameters			+
		Note: After executing 1~2 steps, restores			
		to zero automatically.			
P1 Group A	uxiliary function param	neters 1			
P1.00	Starting mode	0: Start from starting frequency	0	20	
		1: After DC braking, start by starting			+
		frequency			
P1.01	Starting frequency	0.50~20.00Hz	0.50	21	+
P1.02	Hold time of Starting	0.0~60.0s	0	22	
	Frequency				+
P1.03	DC injection braking	0.0~60.0s	0	23	
	time at start				+
P1.04	DC injection braking	0.0~100.0%(motor rated current)	0	24	
	current start				+
					1

	[1	1	
P1.05	Stopping mode	0: Dec-to-stop	0	25	
		1: Dec-to-stop + DC braking			+
		2: Free run to stop			
P1.06	Initial frequency of	0.00~20.00Hz	0	26	
	DC injection braking				+
P1.07	DC injection braking	0: No operation	0	27	
	time	0.1~60.0s			+
P1.08	DC injection braking	0.0~100.0%(motor rated current)	0	28	
1 1100	current		°		+
P1.09	Acc/Dec mode	0: Linear mode	0	29	
	selection	1: reserved			+
P1.10	Time of S curve's	10.0%~50.0%	20.0%	30	
	start part				+
P1.11	Time of S curve's	10.0%~80.0%	60.0%	31	
	rising part				+
P1.12	Restart after power	0: disabled	0	32	
	failure	1: enabled			+
P1.13	Delay time for	0.0~20.0s	2.0	33	
	restarting after				+
	power failure				
P1.14	dynamic braking	630-710	660	34	
	start voltage				
P1.15	Rate of dynamic	0: No dynamic braking	90	35	
	braking	1~100%			#
P1.16	Action on frequency	0: dormancy	0	36	
	lower than lower	1: start, running at lower frequency limit			+
	frequency limit	2: Stop			
P1.17	MF key function	0: No operation; 1: reverse rotation	0	37	+
P1.18	Stop/reset Key	0: action on keypad control mode	0	38	
	function	1: action on both keypad and External			+
		terminal			

		2: action on both keypad and			
54.40	-	communication			
P1.19	Fan control function	0: always run after power on	1	39	+
		1: stop fan after inverter stop running			
P2 Group	Auxiliary function p	arameters 2	-	-	
P2.00	Acc time 2	0.1~3600s	20.0	40	#
P2.01	Dec time 2	0.1~3600s	20.0	41	#
P2.02	Acc time 3	0.1~3600s	20.0	42	#
P2.03	Dec time 3	0.1~3600s	20.0	43	#
P2.04	Acc time 4	0.1~3600s	20.0	44	#
P2.05	Dec time 4	0.1~3600s	20.0	45	#
P2.06	Jog Acc time	0.1~20.0s	10.0	46	#
P2.07	Jog Dec time	0.1~20.0s	10.0	47	#
P2.08	Jog frequency	0.50~60.00Hz	5.00	48	#
P2.09	Multi-frequency 1	0.00~600.0 Hz	0.00	49	#
P2.10	Multi-frequency 2	0.00~600.0 Hz	0.00	50	#
P2.11	Multi-frequency 3	0.00~600.0 Hz	0.00	51	#
P2.12	Multi-frequency 4	0.00~600.0 Hz	0.00	52	#
P2.13	Multi-frequency 5	0.00~600.0 Hz	0.00	53	#
P2.14	Multi-frequency 6	0.00~600.0 Hz	0.00	54	#
P2.15	Multi-frequency 7	0.00~600.0 Hz	0.00	55	#
P2.16	Multi-frequency 8	0.00~600.0 Hz	0.00	56	#
P2.17	Multi-frequency 9	0.00~600.0 Hz	0.00	57	#
P2.18	Multi-frequency 10	0.00~600.0 Hz	0.00	58	#
P2.19	Multi-frequency 11	0.00~600.0 Hz	0.00	59	#
P2.20	Multi-frequency 12	0.00~600.0 Hz	0.00	60	#
P2.21	Multi-frequency 13	0.00~600.0 Hz	0.00	61	#
P2.22	Multi-frequency 14	0.00~600.0 Hz	0.00	62	#
P2.23	Multi-frequency 15	0.00~600.0 Hz	0.00	63	#
P2.24	Jump frequency 1	0.00~600.0 Hz	0.00	64	+

			1		
P2.25	Jump frequency 2	0.00~600.0 Hz	0.00	65	+
P2.26	Jump frequency 3	0.00~600.0 Hz	0.00	66	+
P2.27	Jump frequency	0.00~20.00 Hz	0.00	67	
	range				+
P2.28	FWD/REV dead time	0.1~3600s	0.5	68	+
P2.29	REV prohibited	0: REV enabled	0	69	
		1: REV disabled			+
P2.30	Carrier frequency	2.0~12.0KHz	3.0	70	+
P2.31	Zero frequency	0.0~600.0Hz	0.00	71	
	threshold				+
P2.32	Zero frequency	0.0~600.0 Hz	0.00	72	
	hysteresis				+
P2.33	Droop control	0.00-10.00Hz	0.00	73	+
P3 Group	motor parameters		•		
P3.00	Motor rated power	0.4~999.9KW	Drive's	74	
			rated		+
			power		
P3.01	Motor rated voltage	0~440V	380V	75	+
P3.02	Motor rated current	0.1~999.9A	Drive's	76	
			rated		+
			power		
P3.03	Motor rated	1.00~400.0Hz	50.00	77	
	frequency				+
P3.04	Motor rated speed	1~9999RPM	1440	78	+
P3.05	Motor auto-tuning	0: No operation	0	79	
		1: static auto tuning			+
		2: overall auto- tuning			
P3.06	Stator resistance	0.001-20.00%	Motor	80	
			parameter		+
P3.07	Rotor resistance	0.001-20.00%	Motor	81	+

			parameter		
P3.08	Self inductance	1. 000-9. 999	Motor	82	+
			parameter		
P3.09	Leakage inductance	0. 001-1. 000	Motor	83	+
			parameter		
P3.10	Exciting current with	0.0~999.9A	Motor	84	+
	no load		parameter		Ŧ
P3.11	reserved			85	+
P4Group	V/F control				
P4.00		0: Linear V/F	0	86	
		1: Square V/F			
	V/F control mode	2: 1.5 times torque			+
		3: 1.2 times torque			
		4: User defined V/F			
P4.01	Base voltage	0~440V	380	87	+
P4.02	Base frequency	10.00~600.0 Hz	50.00	88	+
P4.03	Intermediate voltage	0~P4.04	32	89	
	1				+
P4.04	Intermediate voltage	P4.03~100%	50	90	
	2				+
P4.05	Intermediate	0~P4.06	16.00	91	
	frequency 1				+
P4.06	Intermediate	P4.05~400.0Hz	25.00	92	
	frequency 2				+
P4.07	Torque boost	0.0~20.0% (base voltage)	3.0	93	+
P4.08	Slip compensation	0.0~10.0%(rated speed)	0.00	94	+
P4.09	AVR function	0: disabled	0	95	
		1: enabled			+
P5 Group	VC control		1	l	
P5.00	ASR proportional	0.000~6.000	2.000	96	+
. 5.00	1.1.1.1.1.1.1.1	0.000 0.000	2.000		т

				-	
	gain 1				
P5.01	ASR integration time	0.000~9.999	0.500	97	
	1				+
P5.02	ASR proportional	0.000~6.000	1.000	98	
	gain 2				+
P5.03	ASR integration time	0.000~9.999	1.000	99	
	2				+
P5.04	ASR switching	00.00~99.99Hz	5.00	100	
	frequency				+
P5.05	Slip compensation	50.0~200.0%	100.0	101	
	gain				+
P5.06	Driving torque limit	0~200.0%(motor rated current)	150.0	102	+
P5.07	Braking torque limit	0~200.0%(motor rated current)	150.0	103	+
P5.08	reserved			104	+
P5.09	reserved			105	+
P5.10	reserved			106	+
P6 Group	I/O parameters				
P6.00	FWD/REV mode	0: Two-line operation mode 1	0	107	
		1: Two-line operation mode 2			
		2: 3-line operation mode 1			+
		3: 3-line operation mode 2			
P6.01	Up/down rate	0.10~99.99Hz/s	1.00	108	#
P6.02	Definition of input	0 :No function	1	109	
	terminal X1	1: FWD			+
P6.03	Definition of input	2: REV	2	110	
	terminal X2	3: External reset			+
P6.04	Definition of input	4: Jog FWD	3	111	+
	terminal X3	5: Jog REV			
		6: Multi-frequency 1	4	112	+
P6.05	Definition of input	0. Multi-frequency 1	4	112	т
P6.05	Definition of input terminal X4	7: Multi-frequency 2	4	112	т
P6.05 P6.06			5	112	+

	terminal X5	9: Multi-frequency 4			
		10: Terminals for selecting Acc/Dec time 1			
		11: Terminals for selecting Acc/Dec time 2			
		12: Normally open terminal for inputting			
		external fault			
		13: Normally close terminal for inputting			
		external fault			
		14: Frequency increase command			
		15: Frequency decrease command			
		16: Free run to stop			
		17: Three-wire control			
		18: switch of speed given mode			
		19: Reset terminal for program operation			
		20: Start traverse operation			
		21: pause traverse operation			
		22: DC braking command			
		23: Acc/Dec disabled command			
		24: switch between panel control mode and			
		external terminal control mode			
		25: switch between panel control mode and			
		communication control mode			
		26: Counter trig signal			
		27: Counter reset signal			
		28: PID dormancy waking up			
		29: switch between PID positive mode and			
		negative mode			
		30: emergence stop			
P6.07	Terminal filter times	1-100	10	114	
P6.08	Operation protection	0:: protect	0	115	
	of power on terminal	1: no protect			
P6.09	Programmable relay	0: No function	17	116	+

	1	1: Drive ready			
P6.10	Output terminal Y1	2: Drive running signal 1	1	117	+
	definition	3: Drive running signal 2			
		4: Frequency arriving signal			
		5: Frequency detection threshold 1			
		6: Frequency detection threshold 2			
		7: High limit frequency arriving			
		8: Low limit frequency arriving			
		9: Overload signal			
		10: Over voltage stall			
		11: Over current stall			
		12: External stopping command			
		13: Preset counting value arriving			
		14: Specified counting value arriving			
		15: Low voltage lockup signal			
		16: Overload pre-alarm			
		17: Drive failure signal			
		18: Zero speed running			
		19: end signal of stage of program			
		operation			
		20: end signal of cycle of program			
		operation			
P6.11	Frequency arriving	0.00~10.00Hz	0.00	118	
	width				#
P6.12	FDT1 level	0.00~600.0 Hz	50.00	119	#
P6.13	FDT1 lag	0.00~10.00Hz	0.00	120	#
P6.14	FDT2 level	0.00~600.0 Hz	25.00	121	#
P6.15	FDT2 lag	0.00~10.00Hz	0.00	122	#
P6.16	Preset value arriving	0~9999	0	123	+
P6.17	Specified value	0~9999	0	124	
	arriving				+

P6.18	Terminal logic	0~255	0	125	+
P7 Group	Analog input termin	al			
P7.00	AI1 Filter time	0.05~5.00s	0.50	126	#
P7.01	Minimum Al1	0.0~100.0%	0.0	127	#
P7.02	Frequency	0.00~100.0% (Maximum output	0.00	128	
	corresponding to	frequency)			#
	P7.01				
P7.03	Maximum Al1	0.0~100.0%	100.0	129	#
P7.04	Frequency	0.00~100.0% (Maximum output	100.0	130	
	corresponding to	frequency)			#
	P7.03				
P7.05	AI2 filter time	0.05~5.00s	0.50	131	#
P7.06	Minimum AI2	0.0~100.0%	0.0	132	#
P7.07	Frequency	0.00~100.0% (Maximum output	0.00	133	
	corresponding to	frequency)			#
	P7.06				
P7.08	Maximum Al2	0.0~100.0%	100.0	134	#
P7.09	Frequency	0.00~100.0% (Maximum output	100.0	135	
	corresponding to	frequency)			#
	F7.08				
P7.10	FWD/REV dead time	0.0~10.0%	1.0	136	+
	range				Ŧ
P7.11	Potentiometer input	0.05~5.00s	0.50	137	#
	filter time				#
P7.12	Potentiometer input	0.0~100.0%	0.0	138	#
	minimum				#
P7.13	Frequency	0.00~100.0% (Maximum output	0.00	139	
	corresponding to	frequency)			#
	F7.12				
P7.14	Potentiometer input	0.0~100.0%	0.0	140	#

HV390 High Performance Vector Control Inverter User Manual

	maximum				
P7.15	Frequency	0.00~100.0% (Maximum output	100.0	141	
	corresponding to	frequency)			#
	F7.14				
P8 Group	Analog output term	inal		1	
P8.00	AO1 output selection	0: Running frequency	1	142	#
P8.01	reserved	1: Frequency setting	1	143	
		2: Output current(le)			
		3: Output voltage			
		4: Output torque			
		5: DC Bus Voltage			#
		6: PI reference			
		7: PI feedback			
		8: Al1			
		9:AI2			
P8.02	Minimum AO1	0.0~100.0%	0.0	144	#
P8.03	Minimum value	0.0~100.0%	0.0	145	
	corresponding to				#
	F8.02				
P8.04	Maximum AO1	0.0~100.0%	100.0	146	#
P8.05	Maximum value	0.0~100.0%	100.0	147	
	corresponding to				#
	F8.04				
P8.06	reserved	0.0~100.0%	0.0	148	#
P8.07	reserved	0.0~100.0%	0.0	149	#
P8.08	reserved	0.0~100.0%	100.0	150	#
P8.09	reserved	0.0~100.0%	100.0	151	#
P9 Group	program operating	parameters	-		
P9.00	Program running	0: Single cycle (Stop after a single cycle)	0	152	
	function	1: Continuous cycle			+
L		2: Maintain the final value			

P9.01	Run time unit	0: Second	0	153	
		1. Minute			+
P9.02	Stage 1 timing T1	0~3600.0	0	154	+
P9.03	Stage 2 timing T2	0~3600.0	0	155	+
P9.04	Stage 3 timing T3	0~3600.0	0	156	+
P9.05	Stage 4 timing T4	0~3600.0	0	157	+
P9.06	Stage 5 timing T5	0~3600.0	0	158	+
P9.07	Stage 6 timing T6	0~3600.0	0	159	+
P9.08	Stage 7 timing T7	0~3600.0	0	160	+
P9.09	Stage 8 timing T8	0~3600.0	0	161	+
P9.10	Stage 9 timing T9	0~3600.0	0	162	+
P9.11	Stage 10 timing T10	0~3600.0	0	163	+
P9.12	Stage 11 timing T11	0~3600.0	0	164	+
P9.13	Stage 12 timing T12	0~3600.0	0	165	+
P9.14	Stage 13 timing T13	0~3600.0	0	166	+
P9.15	Stage 14 timing T14	0~3600.0	0	167	+
P9.16	Stage 15 timing T15	0~3600.0	0	168	+
P9.17	T1 running mode	0: FWD, Acc/Dec time 1	0	169	+
P9.18	T2 running mode	1: FWD, Acc/Dec time 2	0	170	+
P9.19	T3 running mode	2: FWD, Acc/Dec time 3	0	171	+
P9.20	T4 running mode	3: FWD, Acc/Dec time 4	0	172	+
P9.21	T5 running mode	4: REV, Acc/Dec time 1	0	173	+
P9.22	T6 running mode	5: REV, Acc/Dec time 2	0	174	+
P9.23	T7 running mode	6: REV, Acc/Dec time 3	0	175	+
P9.24	T8 running mode	7: REV, Acc/Dec time 4	0	176	+
P9.25	T9 running mode		0	177	+
P9.26	T10 running mode		0	178	+
P9.27	T11 running mode		0	179	+
P9.28	T12 running mode		0	180	+
P9.29	T13 running mode		0	181	+

HV390 High Performance Vector Control Inverter User Manual

					1
P9.30	T14 running mode		0	182	+
P9.31	T15 running mode		0	183	+
P9.32	Record function	0: Disabled	0	184	
		1: Record, not store after power off			+
		2: Record, store after power off			
PA Grou	o PID parameters				
PA.00	PID control	0: Positive characteristic	0	185	
	characteristic	1: Negative characteristic			+
PA.01	PID Reference	0: Panel Digital setting	0	186	
	selection	1: External analog signal Al1			
		2: External analog signal Al2			+
		3:Communication			
PA.02	Feedback channel	0: External analog signal Al1	0	187	
	selection	1: External analog signal Al2			+
PA.03	Digital setting of	0.00~10.00V	5.00	188	
	reference				#
PA.04	Minimum reference	0~100%	0	189	+
PA.05	Maximum reference	0~150%	100	190	+
PA.06	Minimum feedback	0~100%	0	191	+
PA.07	Maximum feedback	0~150%	100	192	+
PA.08	Proportional gain	0.00~10.00	1.00	193	#
PA.09	Integration time	0.01~99.99s	0.5	194	#
PA.10	Differential time	0.00, no differentiation	0	195	
		0.01~99.99s			#
PA.11	Sample cycle	0.01~99.99s	0.1	196	#
PA.12	Error limit	0.0~15.0%	0.0	197	#
PA.13	Level of abnormal	0~100%	50	198	
	feedback signal				#
PA.14	Detection time of	0: No detection	0.0	199	
	abnormal feedback	0.1~3600s			#

	signal				
PA.15	reserved		0	200	+
PA.16	PID Sleep control	0: No sleep function;	0	201	
	1: Internal waking up,			+	
		2. External input terminal			
PA.17	Delay time of sleepin	0~3600s	0	202	+
PA.18	Sleeping frequency	0.00~400.0Hz	0.00	203	+
PA.19	Delay time of waking	0.0~60.0s	0.0	204	+
PA.20	Waking value	0.0~100.0%	100.0	205	+
Pb Group	Traverse operation	parameters		1	
Pb.00	Traverse mode	0: Auto mode	0	206	
		1: Manual mode			+
Pb.01	Preset traverse	0.00~600.0Hz	0.00	207	
	frequency				#
Pb.02	Hold time of preset	0.0~3600s	0.0	208	
	traverse frequency				#
Pb.03	Preset central	0.00~600.0Hz	0.00	209	
	frequency				#
Pb.04	Travers amplitude	0.0~50.0% (Pb.03)	0.0	210	#
Pb.05	Step frequency	0.0~50.0% (Pb.04)	0.0	211	#
Pb.06	Traverse cycle	0.1~999.9s	10.00	212	#
Pb.07	Rise time of	0.0~100.0% (Pb.06)	50.0	213	
	triangular wave				#
PC Grou	p 485 communicatior	parameters			
PC.00	Baud rate selection	0: 1200BPS	3	214	
		1: 2400BPS			
		2: 4800BPS 3: 9600BPS			+
		4: 19200BPS		1	
		4: 19200BPS 5: 38400BPS			
PC.01	Data format	0: 8,N,2 for RTU (MODBUS)	0	215	
. 0.01	Sala Iomat		Ĭ	2.0	+
		1: 8,E,1 for RTU (MODBUS)			

		2: 8,O,1 for RTU (MODBUS)			
		3: 7,N,2 for ASCII (MODBUS)			
		4: 7,E,1 for ASCII (MODBUS)			
		5: 7,O,1 for ASCII (MODBUS)			
		6: 8,N,1 free communication format			
		7: 8,E,1 free communication format			
		8: 8,0,1 free communication format			
		9: Host mode, send current running			
		frequency			
PC.02	Local address	1~32, 0 is the broadcast address	1	216	+
PC.03	Communication	0, No detection	0	217	
	timeout detect	2.0~10.0s			+
PC.04	Response delay	2~1000ms	218		+
PC.05	EEROM Store	0: Store 0 2		219	
	selection	1: no store function			+
Pd Group	Faults and protection	on parameters			
Pd.00	Motor overload	0: No protection	1	220	
	protection mode	1: Common motor protection		+	
		2: Variable frequency motor protection			
Pd.01	Motor overload	20.0~150.0%	100.0	221	
	protection factor				+
Pd.02	Over voltage stall	0: Disabled	1	222	
	selection	1: Enabled			+
				223	
Pd.03	Stall over voltage	115.0~150.0% (UDC)	120.0	223	
Pd.03	Stall over voltage point	115.0~150.0% (UDC)	120.0	223	+
Pd.03 Pd.04	_	115.0~150.0% (UDC) 0: Detect at constant speed and alarm	120.0 0	223 224	+
	point				+
	point Selection of	0: Detect at constant speed and alarm			+
	point Selection of overload pre-alarm	0: Detect at constant speed and alarm			+

D.L.o.o.					
Pd.06	Overload pre-alarm	0.0~60.0s 2.0 226		226	+
	delay				
Pd.07	Auto current limiting	20.0~180.0%	150.0 227		
	threshold				Ŧ
Pd.08	Frequency decrease	0.00~99.99Hz/s	0.00	228	
	rate during current				+
	limiting				
Pd.09	Action mode of auto	0: Disabled	1	229	
	current limiting	1: Enabled during Acc/Dec, disabled at			
		constant speed			+
		2: Enabled during Acc/Dec, enabled at			
		constant speed			
Pd.10	Auto reset	0: Disabled	0	230	
		1~5: Times of fault reset		+	
Pd.11	Auto reset interval	2.0~20.0s	2.0	231 +	
Pd.12	Relay action in Auto	0: No action	0	232	
	reset	1: action			
Pd.13	Act selection at	0: No action	1	233	
	under voltage fault	1: Act in running state		+	
		2: Act in running and stop state			
Pd.14	reserved		1	234	+
Pd.15	reserved		1	235	+
Pd.16	Under Voltage Point	380V: 250-440	380V:400	236	
		220V: 200-260	220V:250	+	
Pd.17	reserved			237	+
Pd.18	reserved			238	+
Pd.19	reserved			239 +	
Pd.20	reserved			240	+
PE Group	reserved parameter	1			
PE.00	Keyboard frequency	0: Keyboard frequency settings are not	0	241	+

r	r		1		
	setting lock function	locked, you can change the frequency of			
		the inverter settings by keyboard keys			
		1: Keyboard frequency setting lock, can not			
		change the setting frequency of the			
		converter by keyboardincrease key and			
		decrease keys, You can only change the			
		setting frequency of the inverter by			
		changing the P0.11			
PE.01	Terminal start delay	0.1-20.0s	0	242	
PE.02	Terminal stop delay	0.1-20.0s	0	243	
		0: he Modbus protocol responds to the			
		write command			
PE.03	MODBUSrespond	1: Modbus protocol does not respond to	0	244	
		write commands			
		When the frequency is not equal to 0, less			
	Acceleration and	than pPE.04, the acceleration and	0.00		
PE.04	deceleration time	deceleration time is 1, otherwise the		245	+
	switching frequency	acceleration and deceleration time is 2			
PF Group	reserved parameter	2			
PH Group	Display paramete	rs		l	
PH.00	running display	0: Frequency setting	1	267	#
	parameters	1: Running frequency			
	selection	2: Output current			
		3: Output voltage			
		4: Bus voltage			
		5: Overload rate			
		6: Preset line speed			
		7: Running line speed			
		8: Output torque			
		9: Pl reference			
l					

		10: PI feedback			
		11: Reserved			
		12: Analog input Al1			
		13: Analog input Al2			
		14: I/O status			
		15: External counting value			
PH.01	Display parameters	0: Frequency setting	0	268	
	at stop	1: Preset line speed			
		2: DC Bus voltage			
		3:Reserved			
		4: Analog input Al1			
		5: Analog input Al2			#
		6: I/O status			
		7: external counting value			
		8: PI reference			
		9:PI feedback			
PH.02	Line speed factor	0.01~99.99	30.00	269	#
PH.03	Inverter Power			270	*
PH.04	Heat sink	0~100			*
	temperature 1			271	
PH.05	Heat sink	0~100			*
	temperature 2			272	
PH.06	1st fault type			273	*
PH.07	2nd fault type			274	*
PH.08	3rd fault type			275	*
PH.09	Bus voltage at last				*
	fault			276	
PH.10	Output current at				*
	last fault			277	
PH.11	Frequency setting at				*
	last fault			278	
	1				

PH.12	Running frequency at last fault		279	*
PH.13	I/O state at last fault		280	*
PH.14	Total operating time		281	*
PH.15	Software version of		282	*
	CPU Board		282	
PH.16	Software version of		283	*
	Keypad Board		203	

Chapter 6 Detail Function Introduction

P0 Basic function parameters

r o Basio ranotion parameters							
P0.00 Reserved							
P0.01 Running command selection Setting range: 0, 1, 2							
Select physical channel of inverter's runni	ing control command, common running commands include:						
Start, Stop, FWD and REV;							
0: Running command issued by keypad							
Running command is issued by pressing thekeys on the keypad, such as							
RUN, STOP/RESET, JOG, etc.							
 Running command issued by External 	terminals						
Running command is issued by externalterminals, such as FWD, REV, JOGF							
and JOGR (terminal function must be	e defined).						
2: Running command issued by RS485 serialcommunication port							
Running command can be issued throughinternal RS485 serial communication port byhost.							
P0.02 Control mode	Setting range: 0~1						
0: Sensorless vector control							

That is no speed sensor vector control runningmode, which can be used for high performancevariable speed general driving condition.

Note:

- a. At the first running when vector control mode is selected, please perform motor auto-tuning to get accurate parameters of motor. After auto-tuning, motor parameters will be saved in the internal control board for control operation.
- To ensure high steady/dynamic control performance, user must set parameters of speed b. controller correctly. For parameters setup and adjustment of speed controller, please refer to explanation of P5 parameter group.
- If vector control mode is selected, one HV390 can only drive one motor. At this time, c. motor capacity can be one level higher (full load is forbidden) or lower than that of the inverter. Difference of capacity between inverter and motor should not be too large, otherwise, the inverter's control performance drops or drive system cannot operate normally.

1: V/F control

When one inverter drives more than onemotor, if motor auto-tuning cannot beperformed or the motor's parameters cannot beacquired through other methods, please selectV/F control mode.

P0.03 Main Frequency Source	Setting range: 0~9

HV390 series inverter has ten kinds offrequency setting mode.

0: Keyboard settings, set the current frequency by digital settings P0.11, adjust the inverterthrough the keyboard up and down key

1: Reserved

2: External analog signal AI1 (0~10V or 0~20mA)the voltage / current signal is determined by the J4 jumper selection

Use external analog signal Al1to set the running frequency

3: External analog signal AI2 (0~10V or 0-20mA), the voltage / current signal is determined by the J5 jumper selection

4: up/down 1 setting

Present frequency is set by terminal defined by up/down function. Frequency setting is held when the drive stops.

5: up/down 2 setting

Present frequency is set by terminal defined by up/down function. Frequency setting is the data of P0.11

when the drive stops.

6: Multi Frequency

You need to set relevant parameter of the P6 I/O and P2 ,When choose multi frequency operational mode 7: PID

- You need to set relevant parameter of the PA and PID ,When choose PID operational mode
 - 8: RS485 setting

Frequency setting is set by host computer via RS485 serial communication command.

9: Program running

When inverter begins running, Need to set P9 parameter.

P0.04 Main Frequency gain Setting arrange: 0.000~9.999

The main frequency is the product of the setting frequency selected by parameter P0.03 and this gain.

P0.05 Zero frequency source of multi-speed mode	of Setting arrange: 0~3
--	-------------------------

0: Digital frequency of P0.11

1: Reserved

2: External analog signal:Al1

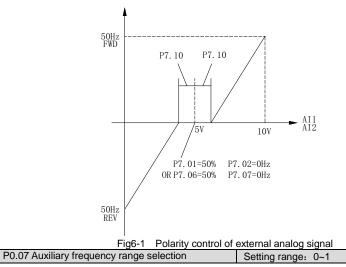
- 3: External analog signal:AI2
- 4: Communication given

P0.06 Auxiliary frequency setting Setting arrange: 0~4

HV390 series inverter has 4 kinds of auxiliary frequency setting mode

0: External analog signal Al1(0~10Vor0~20mA)the voltage / current signal is determined by the J4 jumper selection

1: External analog signal Al2(0~10V or0~20mA)the voltage / current signal is determined by the J5 jumper selection


2: External analog signal Al1(0~10V or0~20mA) (+/- polarity)

3: External analog signal Al2(0~10V or0~20mA) (+/- polarity)

4: PID

5: Keyboard Increase and decrease key

When P0.06=2, 3, Polarity control of external analog Al1 and Al22 is shown in Fig. 6-1, With 5v as the analog input, the center point is 0-5v negative adjustment and 5v-10v forward regulation.

When the p0.09 is used to determine the range of the auxiliary frequency settings

0: Maximum output frequency

1: Main frequency

P0.08 Auxiliary frequency range Setting range: 0~100%

The auxiliary frequency is the product of the setting frequency selected by parameter P0.07 and this gain.

P0.09 Setting Frequency selection	Setting range: 0~9
	eeting tanget e e

Select the setting frequency source of the inverter. The frequency is given through a combination of the frequency setting and the auxiliary frequency setting

0: Main frequency

The setting frequency source of the inverter is determined by the main frequency of the parameter of P0.03.

1: Auxiliary frequency

The setting frequency source of the inverter is determined by the auxiliary frequency of the parameter of P0.06.

- 2: Main frequency + Auxiliary frequency
- 3: Main frequency Auxiliary frequency
- 4: switch between main frequency and auxiliary frequency

The setting frequency source of the inverter can be switched between the main frequency and auxiliary frequency with the external terminal defined by P6 Group parameter.

5: switch between Main frequency and (Main frequency + Auxiliary frequency)

The setting frequency source of the inverter can be switched between the main frequency and (Main

frequency + Auxiliary frequency) with the external terminal defined by P6 Group parameter.

6: switch between Main frequency and (Main frequency - Auxiliary frequency)

The setting frequency source of the inverter can be switched between the main frequency and (Main frequency - Auxiliary frequency) with the external terminal defined by P6 Group parameter.

7: MAX (Main frequency, Auxiliary frequency)

The setting frequency source of the inverter is maxium of main frequency and auxiliary frequency

8: MIN (Main frequency, Auxiliary frequency)

The setting frequency source of the inverter is minium of main frequency and auxiliary frequency

9: Traverse operation

The setting frequency source of the inverter is determined by traverse operation mode defined by function code Pb parameter group.

P0.10 Keyboard selection	and	up/down	setting	store	Setting range: 0、1
SEIECTION					

0: Store

The initial frequency setting value is the value of parameter P0.11. It can be changed by the terminal defined with function UP/DOWN. When the inverter is power off, the current frequency setting value is stored.

1: Not Store

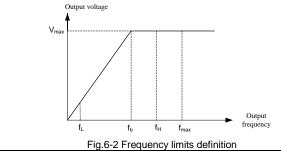
The initial frequency setting value is the value of parameter P0.11. It can be changed by the terminal defined with function UP/DOWN. When the inverter is power off, the current frequency setting value is notstored.

P0.11digital frequency setting	Setting range: 0.00~High frequency limit
--------------------------------	--

If digital frequency setting via panel is selected, the value of parameter, will be the present preset frequency.

	P0.12 Rotating direction	Setting range: 0, 1
-	If panel control mode is selected, select the relationship between inverter's actual output direction a	

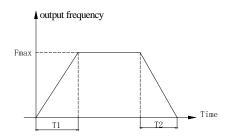
the direction of control command.


0: Same with control command;

P0.13Maximum output frequency	Setting range: 50Hz~600.0Hz
P0.14 High frequency limit	Setting range: 0.00Hz~ Maximum output frequency
P0.15 Low frequency limit	Setting range: 0.00Hz~Upper frequency limit

The maximum output frequency is themaximum frequency which the inverter is ableto output, shown in Fig. 6-2 as Fmax;

High frequency limit is the maximum frequency which the user is allowed to set, shown in Fig. 6-2 as Fh;


Low frequency limit is the minimum frequencywhich the user is allowed to set, shown inFig. 6-2 as FL; Fb in Fig.6-2 is basic running frequency, which is defined as the lowest output frequency when the inverter outputs the highest voltage in V/Fcontrol mode.



P0.16 Acc time 1 Se	etting range: 0.1~3600s
P0.17 Dec time 1 Se	etting range: 0.1~3600s

Acc time means the time during which theinverter output from zero frequency to the maximum output frequency, shown in Fig. 6-3 asT1.

Dec time means the time during which theinverter outputs from the maximum output/frequency to zero frequency, shown in Fig. 6-3 as T2.

Factory setting of Acc/Dec time: Acc/Dec time 1 (P0.16, P0.17) .

Other Acc/Dec time must be selected through control terminals according to different groups (Please refer to P2 Parameter group).

When program is running, selection of Acc/Dec timegroup is setup in function code (Please refer to P9 Parameter group).

P0.18 reserved	Setting range: 0, 1

P0.19 Parameter initialization	Setting range: 0~3

0: No operation

Inverter is in normal parameter read/write state.

1: Clear fault information

The fault information clearing operation willclear all the memorized parameters stored in the function codes between $PH.06 \sim PH.13$

2: Recover factory setting

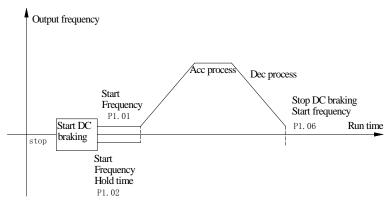
Setup F0.19 to 2 and confirm, inverter willrecover all the parameters between P0~P2 and P4~PH to the defaultfactory setting value.

All the setting values of P3 Parameter groupwill not be influenced when factory settingvalue is restored. 3: Parameter locking

When set P0.19 to 3, parameter locking function is enabled. Except this parameter, all other

parameters are read only and can not be modified.

P1 Auxiliary function parameters 1


P1.00 start mode	Setting range: 0~1

0: Start from starting frequency

When inverter begins running, it starts fromstarting frequency (P1.01) and runs for the presettime (P1.02) at this frequency according to the setting values of P1.01 and P1.02; then itenters normal Acc mode according to presetAcc time and Acc/Dec mode parameters, atlast it accelerates to preset frequency.

1: Brake first then start from starting frequency

When inverter begins running, it starts DCinjection braking process according to the preset DC injection braking voltage and timedefined in P1.03 and P1.04. It starts from starting frequency, and runs for the preset time at thisfrequency; and then enters normal Acc modeaccording to preset Acc time and Acc/Decmode parameters, and at last accelerates topreset frequency. The process is shown inFig. 6-4.

Fig. 6-4 Start mode 1 (FWD, REV, Stop and RUN) diagram

P1.01 Starting frequency	Setting range: 0.50~20.00Hz
P1.02 Hold time of starting frequency	Setting range: 0.00~60.0s

Start frequency: It is the initial frequency when he inverter starts from zero frequency, which is shown in Fig. 6-4.

In the Acc and Start process, if the presetfrequency is lower than the start frequency, inverter's output frequency becomes zero:

Start frequency holding time: the running timeat start frequency in Acc/Start process, which is shownin Fia. 6-4.

P1.03 DC injection brakingtime at	Setting range: 0.00~60.0s
start	
P1.04 DCinjection braking current at start	Setting range: 0.0~100.0% (inverter rated currente)

DC braking time at start:holding time for outputDC injection braking current when the inverteris in start process.

If DC injection braking time at start is set to 0.0second, DC injection braking function isdisabled. DC braking current at start:percentage of braking voltage when the inverter starts in DC injection braking process.

Setting range: 0, 1, 2 P1.05 Stop mode selection

0: Dec-to-stop mode 1

When the inverter receives stop command, itlowers its output frequency and decelerates tostop

according to the preset Dec time. During Dec process, for inverter with braking resistor or unit, it will enter dynamic braking.

1: Dec-to-stop mode 2

After the inverter receives stop command, itlowers its output frequency and decelerates tostop according to the preset Dec time. During Dec process, when output frequency is equal to the frequency set by P1.06, the inverter starts DC braking according to the DC braking time and voltage defined by P1.07 and P1.08.

2: Free run to stop

After the inverter receives the stop command, it stops its output immediately; the motor will decelerate to stop according to its inertia.

 P1.06Initial frequency of DC injection braking
 Setting rang: 0.00~20.00Hz

P1.06Initial frequency of DC injection braking	Setting rang: 0.00~20.00Hz
Initial frequency of DC injection braking: It isthe frequency	ency when the inverter's outputfrequency is

decreased to zero along the Decurve in Dec-to-stop process, which is shown in Fig. 6-4.

In the process of Dec-to-stop, when the presetfrequency is lower than the initial frequency of Stop DC injection braking, the inverter's output frequency is decreased to zero.

If the running condition has no strictrequirements for braking, the initial frequencyof DC injection braking should be set as low aspossible.

P1.07DC injectionbraking time	Setting range: 0.0, 0.1~60.0s
P1.08 DC injection braking current	Setting range: 0.0~100.0% (inverter's rated current)

DC injection braking time: the time formaintaining output DC injection braking in inverter's stopping process.

DC injection braking current: percentage ofbraking voltage when the inverter stops in DCinjection braking mode.

When the DC injection braking time is set to0 second., the DC injection braking function isdisabled.

P1.09 Acc/Dec modeselection Setting range: 0, 1

Acc/Dec modes 0 and 1 are valid in Start, Stop, FWD/REV, Acc and Dec process.

0: linear mode

In Acc/Dec process, the relationship betweenoutput frequency and Acc/Dec time is linear. The output frequency increases or decreases at the constant slope as shown in Fig. 6-5.

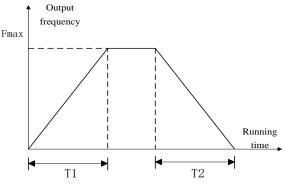


Fig. 6-5 linear Acc/Dec

1: S curve mode (reserved)

In Acc/Dec process, the relationship betweenoutput frequency and Acc/Dec time isnonlinear. The output frequency increases ordecreases according to the S curve shown inFig. 6-6.

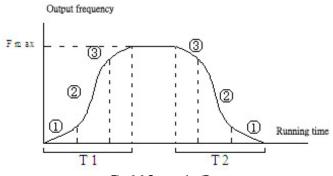


Fig. 6-6 S curve Acc/Dec

P1.10	Time of S curve's startpart	Setting range:10.0 ~ 50.0 %(Acc/Dec time)
P1.11	Time of S curve' srising part	Setting range:10.0 ~ 80.0 %(Acc/Dec time)

The function codes of P1.10 and P1.11 define he Acc/Dec parameters of S curve.

S curve start time is shown in Fig. 6-6 as $(\ensuremath{\mathbbm l}),$ which is the stage when the slope of output/frequency rises gradually.

S curve rise time is shown in Fig. 6-6 as ②, which is the stage when the slope of output/frequency maintains phase.

S curve end time is shown in Fig.6-6 as $(\ensuremath{3}),$ which is the stage when the slope of output/frequency decreases to zero.

Note:

1. Limit of setting value:S curve start time + Scurve rise time≤90% (Acc/Dec time).

2. In Acc/Dec Process, the parameters of Scurve are set in symmetry.

P1.12 Restart after powerfailure	Setting range: 0, 1
0: Disabladi	

0: Disabled;

1:Enabled; Function of restarting after power failure isenabled when the power supply recovers.

P1.13 Delay time forrestarting after power failure	Setting range: 0.0~20.0s
When the power recovers from failures, thetime before the	inverter restarts is the delaytime.
This time is set according to the time neededby other equipme	nt to recover when the power supply recovers.

P1.14 dynamic braking start voltage	380V voltage level Setting range: 630~710V
	220V voltage level Setting range: 350~380V
Setting the start voltage of dynamic braking.	
P1.15Rate of dynamic braking	Setting range: 0.0 ~100.0%

Define duty cycle of dynamic braking.

0: No dynamic braking

1%~100%: In process of dynamic braking, percentage of valid braking time to carrier cycle, user can modify this value if necessary.

P1.16Start frequency lower than frequency limit	Setting range:0, 1,2				
0:when preset frequency is lower than low frequency limit, the inverter will not start;					
1: when preset frequency is lower than low frequency limit, the inverter will start at low frequency limit;					
2:When preset frequency is lower than frequency limit, the inverter stop.					
P1.17 M key function					
O Ne execution					

0: No operation;

1: forward rotation

2: reverse rotation

P1.18 Stop/reset Key function Setting range: 0, 1, 2

This parameter decides the "stop" function of STOP/RESET key of the keypad in different command source. The "Reset"function is usable in all command source.

Setting arrange: 0, 1

- 0: action on keypad control mode
- 1: action on both keypad and External terminal
- 2: action on both keypad and communication

P1.19Fan control function

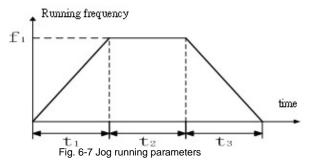
- 0: Cooling fan always runs after power on
- 1: Cooling fan stops fan after inverter stop running

P2 Auxiliary function parameters 2

P2.00 Acc time2	Setting arrange: 0.1~3600s
P2.01 Dec time2	Setting arrange: 0.1~3600s
P2.02 Acc time3	Setting arrange: 0.1~3600s
P2.03 Dec time3	Setting arrange: 0.1~3600s
P2.04 Acc time4	Setting arrange: 0.1~3600s
P2.05 Dec time4	Setting arrange: 0.1~3600s

Four Acc/Dec times are defined as following:

Phases of Acc/Dec time		1	2	3	4
Terminal state	DI4	OFF	ON	OFF	ON
Terminal state	DI5	OFF	OFF	ON	ON


As shown in the table above, in normal operation condition, Acc/Dec time 1 is the default setting (both terminals DI4, DI5 are OFF, and Acc/Dec time 1 and 2 are defined by terminal DI4 and DI5 respectively).

P2.06 Jog Acc time 1	Setting range: 0.1~20.0s
P2.07 Jog Dec time 1	Setting range: 0.1~20.0s
P2.08Jog frequency	Setting range: 0.5~60.00Hz

P2.06~P2.08 define the jog running parameters, which is shown in Fig. 6-7.

In Fig. 6-7, f1 is Jog running frequency (P2.08), t1 is Jog Acc time (P2.06), t3 is Jog Dec time (P2.07), and t2 is the Jog running time.

Jog running command can be issued throughpanel, control terminal or host computer.

P2.09 Multi-frequency 1	Setting range: 0~600.0Hz
P2.10 Multi-frequency 2	Setting range: 0~600.0Hz
P2.11 Multi-frequency 3	Setting range: 0~600.0Hz
P2.12 Multi-frequency 4	Setting range: 0~600.0Hz

D 0 40	-	0 with a second lite
	Multi-frequency 5	Setting range: 0~600.0Hz
	Multi-frequency 6	Setting range: 0~600.0Hz
P2.15	Multi-frequency 7	Setting range: 0~600.0Hz
P2.16	Multi-frequency 8	Setting range: 0~600.0Hz
P2.17	Multi-frequency 9	Setting range: 0~600.0Hz
	Multi-frequency 10	Setting range: 0~600.0Hz
P2.19	Multi-frequency 11	Setting range: 0~600.0Hz
	Multi-frequency 12	Setting range: 0~600.0Hz
	Multi-frequency 13	Setting range: 0~600.0Hz
P2.22	Multi-frequency 14	Setting range: 0~600.0Hz
P2.23	Multi-frequency 15	Setting range: 0~600.0Hz

Multi-frequency/speed is set in P2.09~P2.23, which can be used in multi-speed running and programming state.

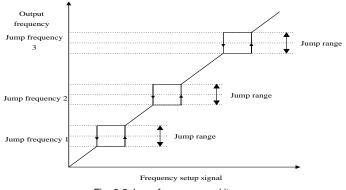
There are 15 multi-frequency operation modes, which can be selected through control terminals. Assumption:

"1 (ON)" means that control terminal is connected;

"0 (OFF)" means that control terminal is disconnected.

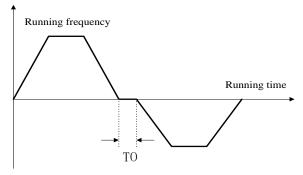
If control terminals of multi-frequency are not set, or all of them are in OFF position, frequency setting is determined by function code P0.05;

If certain control terminal of multi-frequency is not in OFF position, frequency setting is determined by function code P2.09~P2.23;


If multi-frequency operation is selected, Starting/stopping the drive is determined by control mode selection P0.01.


Freque ncy Terminal	1 X	2 X	3 X	4 X	5 X	6 X	7 X	8 X	9 X	10 X	11 X	12 X	13 X	14 X	15 X
Terminal 1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
Terminal 2	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
Terminal 3	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
Terminal 4	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

P2.24Jump frequency 1	Setting range: 0~600.0Hz
P2.25 Jump frequency 2	Setting range:0~600.0Hz
P2.26Jump frequency 3	Setting range:0~600.0Hz
P2.27Jump frequency range	Setting range:0~20.00Hz


Jump frequency is set to prevent the output frequency of inverter from meeting themechanical resonant point of load.

In Jump frequency parameters, set thesystem's mechanical resonant central frequency, at most three frequency values can be setup, shown in Fig.6-8.

FWD/REV dead time: the waiting and holdingtime before the motor changes its rotating direction after the inverter's output frequency isdecreased to zero. It is the time taken by themotor to change its rotating direction when theinverter receives REV command during itsrunning process. The time is shown in Fig. 6-9 as T0.

	P2.29REV p	orohibited		S	ettin	g range:	0, 1			
W	hen P2.29=0	, this function is	disabled.	In this ca	ase,	terminal	F/R=OFF,	Run F	WD; terminal	F/R=ON,
Run R	ev:									

When P2.29=1, this function is enabled. In this case, terminal F/R signal is invaid. Mtor can only run forward, and switching between FWD/REV is not available.

Running mode of routine program is independent of this function.

In traverse operation mode, both FWD and REV running are allowable, but switching between FWD/REV is prohibited. Setting FWD/REV direction may not be same as actual direction, which can be defined by changing phase sequence of the output.

P2.30Carrier frequency adjustment	Setting range:2.0~12.0KHz
-----------------------------------	---------------------------

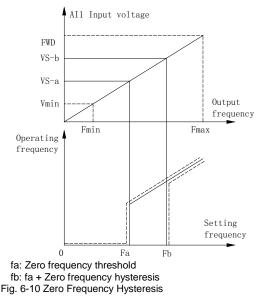
Carrier wave frequency can be continuously adjusted within 2.0~12.0KHz.

This function is mainly used to improve system performance, and reduce noise and vibration. Since HV390 series adopts IGBT as power devices, carrier frequency can be higher. Increasing carrier frequency can bring following benefits: better current waveform, lower noise, which is especially suitable for applications that need low noise. However, with the increase of carrier frequency, it also brings some disadvantages, such as increase of power loss on switching devices, overheat, low efficiency, etc. Since high frequency carrier produces severeradio interference, please install filter for application with high requirement on EMI. At the same time, capacitive leakage current increases, and the wrong action of leakage protector and over current may happen.

Decreasing carrier frequency, the contrary is the case. Motor noise will increase in lower carrier frequency. Influence of carrier frequency is different for various motors. Therefore, optimalcarrier frequency should be selected according to practical situation. In fact, with the increase of motor capacity, carrier frequency should decrease. For motor capacity above 37 kW, 2KHz carrier frequency is recommended.

P2.31Zero frequency threshold	Setting range: 0~600.0Hz	
P2.32Zero frequency hysteresis	Setting range: 0~600.0Hz	

The above two parameters are to set zerofrequency hysteresis control. Take analog input AI1 for example, see Fig.6-10:


Startup process:

When the Run command is issued, only afterAl1voltage arrives or exceeds VS-b, does the drive start and accelerate to the preset frequency in defined Acc time.

Stop process:

During Dec process, when Al1voltage reduces to VS-b, thedrive will not stop until it reaches VS-a and the corresponding frequency becomes fa, where fa is the threshold of zero frequency defined by P2.31, and fb, fa is defined by P2.32.

This function can realize dormancy to saveenergy, in this way, frequent start and stop atthreshold frequency can be avoided.

P2.33Droo	p control	Setting range:	0.00~10.00Hz
When several	inverter drives one load, the load of i	ndivial inverter is	different due to speed difference.

When several inverter drives one load, the load of indivial inverter is different due to speed difference. The inverter with higher speed drives more load. This parameter can decrease the speed when the load is increased and equalizes the load of inverters.

P3 Motor parameters

P3.00 Motor rated power	Setting range:0.4~999.9kW
P3.01 Motor rated voltage	Setting range:0~440V
P3.02 Motor rated current	Setting range:0.1~999.9A
P3.03 Motor rated frequency	Setting range:1.00~600.0Hz
P3.04 Motor rated speed	Setting range: 1~999 rpm

Note:

In order to ensure motor tuning, please set nameplate parameter of the motor correctly.

In order to ensure high control performance, the motor capacity should match that of the drive. Generally the motor's power is allowed to be one grade higher or lower that of the drive.

P3.05 Motor auto-tuning	Setting range: 0, 1,2	
-------------------------	-----------------------	--

Note: Before tuning, the parameters on thenameplate of the motor must be inputcorrectly (F3.00~F3.04).

0: No operation

1: static autotuning

If the load can not be unconnected from motor, user can adopt static autotuning. First set F3.05 to 1, after confirmation, thenpress the RUN key on the Keypad, inverter willperform static auto-tuning functions.

2: overall auto- tuning

First set F3.05 to 2, after confirmation, thenpress the RUN key on the Keypad, inverter willperform overall auto-tuning functions. The overall auto- tuning includes static autotuning and spinning autotuning and the load must be unconnected form the motor.

Note:

- If over-current or over-voltage fault occurs during tuning process, user can adjust Add/Dec time (P0.16, P0.17) and torque boost (P4.07);
- b. Do not start tuning with load on motor;
- c. Make sure the motor is in stopping status before tuning, otherwise, the tuning can not be performed normally;

P3.06 Stator resistance	Setting range: 0.001-20.00%
P3.07 Rotor resistance	Setting range: 0.001-20.00%
P3.08 Self inductance	Setting range: 1.000~9.999
P3.09 leakage inductance	Setting range: 0.001~1.000
P3.10Exciting current with no load	Setting range: 0.0~999.9A

d. Motor auto-tuning can only be performed in keypad control mode(P0.01=0).

Factory settings of P3.06~F3.10 are the parameters of motor that rated power matches the inverter. If user already knows the motor's parameters, just input the motor parameters directly. However, after successfully performing motor auto-tuning, value of P3.06~P3.10 will be updated automatically.

Resistance and inductance are the relative value of the nomial motor parameters.

Resistance value=(real Resistance value)* (1.732*I) /V*100%;

Inductance value=(real Inductance value)*2*3.14*P*(1.732*I)/V;

In above formular, V is motor rated voltage defined by P3.01 ; I is motor rated current defined by P3.02 ; Pis the motor rated frequency defined by P3.03.

These parameters are reference parameters for vector control, which will affect control performance directly.

P3.11 Reserved

P4 Dedicatd function for V/F control

P4.00 V/F curve control mode	Setting range: 0~4
------------------------------	--------------------

0: linear voltage/frequency mode (constant torque load), shown as curve 0 in Fig. 6-11;

- 1: Square voltage/frequency mode, shown as curve 1 in Fig. 6-11;
- 2: 1.5 times torque/frequency mode, shown as curve 2 in Fig. 6-11;
- 3: 1.2 times torque/frequency mode, shown as curve 3 in Fig. 6-11;
- 4: User defined V/F curve.

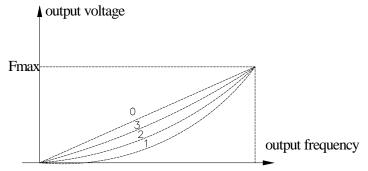


Fig. 6-11 V/F curve

P4.01 Base voltage	Setting range: 0~440V
P4.02 Base frequency	Setting range: 10.00~ 600.0Hz

Basic V/F characteristic of HV390 series is shown in Fig. 6-12. BaseFrequency F_{BASE} is the output frequency corresponding to the rated output voltage U_N . Its range is 10 to 600Hz. Generally, F_{BASE} should be selected according to rated frequency of the motor. In some special case, it can be selected according to requirement. In this condition, both motor V/F characteristic and output torgue should be considered.

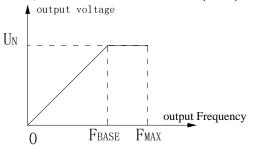
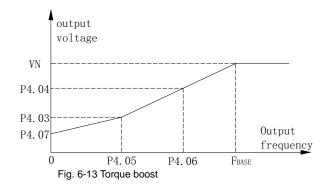



Fig. 6-12 Base voltage and frequency

P4.03Intermediate voltage 1	Setting range:0~P4.04
P4.04Intermediate voltage 2	Setting range:P4.03~100% (Reference voltage P4.01)
P4.05Intermediate frequency 1	Setting range:0~P4.06
P4.06Intermediate frequency 2	Setting range: P4.05~600.0Hz
P4.07 Torque boost	Setting range:0~10%(Reference voltage p4.01)

In order to compensate the torque drop at low frequency, the inverter can boost the output voltage in the lowfrequency zone, which is shown in Fig. 6-13.

Note:

Generally, factory setting (2%) can satisfy most applications. If over-current fault occurs during startup, please increase this parameter from zero gradually until it meets requirement. Pay attention that large torque boost could damage equipment.

P4.08 Slip compensation	Setting range: 0.0~10%(Rated speed P3.04)	
-------------------------	---	--

In V/F control mode, motor's speed will bedecreased with load rising. In order to ensure the motor's speed be close to synchronousspeed in rated load condition, slipcompensation can be done according to the preset frequency.

P4.09 AVR function	Setting range:0, 1
--------------------	--------------------

0: Disabled; 1: Enabled

AVR is auto voltage regulation. When theinverter's input voltage differs with the ratedinput voltage, the inverter's output voltage canbe stablized by adjusting the width of PWMwave.

This function is disabled when the outputvoltage is higher than input voltage.

P5 Vector control funtion

P5.00 ASRproportional gain 1	Setting range:0.00~6.000	
P5.01 ASR integration time 1	Setting range:0.00~9.999	
P5.02 ASRproportional gain 2	Setting range:0.00 \sim 6.000	
P5.03 ASR integration time 2	Setting range:0.00~9.999	
P5.04 ASR switchingfrequency	Setting range:0.0~99.99Hz	

Through P5.00~P5.04, user can set theproportional gain P and integration time I ofspeed regulator, so as to change the speedresponse characteristic.

a.Speed regulator (ASR)'s structure is shown in Fig.6-14, where K_{P} is proportional gain P, and K_i is integration time I.

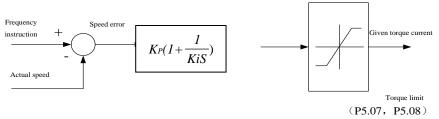


Fig. 6-14 Simplified block diagram of ASR

If the integral time is set to 0 (P5.01=0, P5.03=0), which means integral function is disabled, and the speed loop is simply a proportion regulator.

b.Adjustment of proportion gain P and integration time I for speed regulator

Increasing P will fasten system transient response, but system oscillation may occur given too big P.Decreasing I will fasten transient response, but system oscillation and overshoot may occur given too small.

Normally, user may tune P first, increase its value as long as no system oscillation occurs; then adjust I, ensuring fast response without overshoot. Figure 6-15 shows better speed step response if P, I are set properly. Speed response can be monitored through analog terminals AO1 and AO2. Refer to P8 parameter group for detail information.

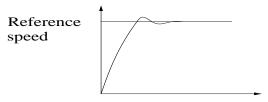


Fig. 6-15 Step response with better dynamic performance

Note:

With improper PI parameters, after accelerating to high speed, over-voltage during Dec process may occur (Without external braking resistor or unit), which is caused by regenerative braking after speed overshoot. To avoid this fault, user can tune PI parameters.

Adjustment of PI parameter in high/low speed applications

If system is required to respond quickly both in low and high frequency operation with load, user may set ASR switching frequency (P5.04). Normally, when the system runs at low frequency, the transient response performance can be improved by increasing P and decreasing I. Adjust ASR parameters following the procedures below:

Set appropriate switching frequency P5.04;

Tune proportional gain P5.00 and integrationtime P5.01 for low-speed application, andensure no oscillation and good response performance at low frequency.

Next, tune proportional gain P5.02 and integration time P5.03 for high-speed application, and ensure no oscillation and good response performance at high frequency.

P5.05 Slip compensation gain	Setting range:50.0~200.0%
------------------------------	---------------------------

P5.05 is used to calculate slip frequency. Setting value 100% means rated slip frequency corresponds to rated torque current. User may decrease/increase the settings of P5.05 to adjust the speed control's difference accurately.

Note:

This function is valid to open loop vector control mode. For close loop vector control mode, F5.05 can be set to 100% for most applications.

P5.06 Torque control Setting range:0, 1

This function is reserved.

P5.07 Driving torque lilmit	Setting range:0.0 \sim 200.0% (motor's rated current)
P5.08 Braking torque limit	Setting range:0.0~200.0%(motor's rated current)

Torque limiting is used to limit output torque current of speed regulator'.

Torque limit is the percentage of the motor's rated current; If the torque limit is 100%, then the torque current limit is the motor's rated current. P5.07 and P5.08 limit the output torque in driving state and braking state respectively, which is shown in Figure 6-16.

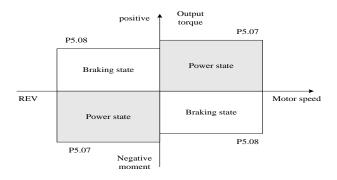


Fig. 6-16 Torque limit function

P5.09Retain	
P5.10 Retain	

Setting range: 0~3

P6 I/O output terminal

P6.00 FWD/REV running

0: Two-line operation mode 1

FWD	REV	Running
		command
0	0	Stop
0	1	REV
1	0	FWD
1	1	Stop

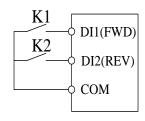
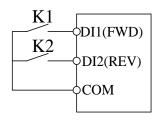
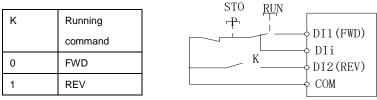


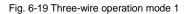
Fig. 6-17 Two-line control mode 1

In Fig. 6-17, terminal DI1 is defined as running FWD, and DI2 is defined as running REV.

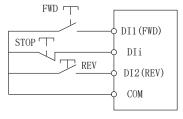
1: Two-line operation mode 2

FWD	REV	Running
TWB		command
0	0	Stop
0	1	Stop
1	0	FWD
1	1	REV


Fig.6-18 Two-line control mode 2

In Fig. 8-18, terminal DI1 is defined as running FWD, and DI2 is defined as running REV.


2: Three-wire operation mode 1

i=3, 4, 5,

3: Three-wire operation mode

i=3, 4, 5

Fig. 6-20 Three-wire operation mode 2

In Fig.6-19 and 6-20, DI1 is defined as running FWD, DI2 is defined as running REV, and K is used for selecting running direction;

In Fig. 6-19 and 6-20, STOP is a normally closed button for stopping the motor. RUN, FWD and REV are normally open buttons for running the motor, and they are active at pulse edge.

In Fig. 6-19 and 6-20, Dli (I=3~5) is defined as three-wire running control terminal of DI3~DI5

In 3-wire mode, when DI3~DI5 is not selected, the inverter will report ERR4 fault.

P6.01 Up/down rate	Setting range:0.10~99.99Hz/s
	Octaing range.o. 10 00.00112/0

Up/down rate: To define the increase/decrease rate when using up/down terminal to change reference frequency.

P6.02 Selecting the function of control terminal DI1	Setting range:0 \sim 30
P6.03 Selecting the function of control terminal DI2	Setting range:0 \sim 30
P6.04Selecting the function of control terminal DI3	Setting range:0~30
P6.05Selecting the function of control terminal DI4	Setting range:0 \sim 30
P6.06Selecting the function of control terminal DI5	Setting range:0 \sim 30

Control terminals DI1~DI5 are programmabledigital input terminals. DI1~DI5 can be defined by setting the values of P6.02~P6.08 respectively.

Programmable digital input terminal can beselected as " no function" repeatedly (that is, itcan be set as 0 at the same time). Function description is shown below:

Content	Function	Content	Funtion
0	DI1~DI5: No function (can be	16	Free run to stop
	selected repeatedly)		
1	Run FWD	17	Three-wire control
2	Run Rev	18	Voltage/current switching
3	External reset	19	Input terminal for recording program
			operation
4	Jog FWD (JOGF)	20	Start traverse operation
5	Jog REV (JOGR)	21	DC braking command
6	Multi-frequency 1	22	Acc/Dec disabled command
7	Multi-frequency 2	23	Switch between panel control mode and
			externalterminal control mode
8	Multi-frequency 3	24	Counter trig signal
9	Multi-frequency 4	25	Counter reset signal
10	Terminals for selecting Acc/Dec time	26	PID dormancy waking up
	1		

11	Terminals for selecting Acc/Dec time	27	Counter reset signal
	2		
12	Normally open terminal for inputting	28	PID dormancy waking up
	externalfault		
13	Normally close terminal for inputting	29	switch between PID positive mode and
	externalfault		negative mode
14	Frequency increase command	30	Emergence stop
15	Frequency decrease command		

Note:

1. When DI1~DI4 is selected 0, no function is defined, When DI5 is selected0, the pulse frequency is input

2. 1~2: input terminals for external operation control

In terminal control mode (P0.01=1), the terminal is used to select FWD/REV operation.

3. 3: External RESET

If fault alarm occurs, user can reset the inverter by external terminal. This function is active at rising edge of pulse signal. It has the same function as STOP/RESET key.

4. 4~5: Terminal for external FWD/REV Jog running control.

In terminal control mode (P0.01=1), this terminal is used to select Jog operation.

5. 6~9: Multi-frequency terminals

In multi-frequency operation mode, 4 digital input terminals should be defined as the control terminals. Through the combination of ON/OFF state of the 4 terminals, up to 15 values can be defined set as preset frequency. Refer to parameter P2.09~P2.23 for details.

6. 10~11: Acc/Dec time terminals

By combination of the ON/OFF state of Acc/Dec time terminals, user can select Acc/ Dec time 1~4, refer to parameter P0.16,P0.17 and P2.00~P2.05 for more details. If this function is not defined, Acc/Dec time 1 will be the default setting except in simple PLC operation mode.

7. 12~13: Normally open terminal for external fault

Fault signal of external equipment can be input via the terminal, which is convenient for the drive to monitor the fault of external equipment. Once the drive receives the fault signal, it will display "Er11". During normal stop process, this function is disabled. The fault signal has two input

modes, i.e. normally open and normally close.

8. 14~15: Frequency increase/decease command

The running frequency can be set throughexternal terminals, thus the running frequencycan be set remotely. At this time,P0.03 can beset to 2 or 3. When the terminal is ON, thefrequency setting value is increased ordecreased at the rate defined by P6.01; when the terminal is OFF, frequencysetting value keeps constant. When these twoterminals are ON at the same time, frequencysetting value also keeps constant. Please referto P0.03 parameters description.

9. 16: Free run to stop terminal (FRS)

When the function terminal is ON, inverter stops output immediately andenter stopping state, the motor enters free run to stop state.

10 .17: Three-wire control

If F6.00=2 or 3, this terminal is defined as three-wire control terminal whenthree-wire control mode is selected. If If F6.00=2 or 3, and none of D11~D15 is defined as three-wire control terminal, the inverter will report parameter setting fault ERR4. In this case, user should define "three-wire control terminal" first, and then define "three-wire control mode" (P6.00=2 or 3).

11.18: Switching input signal

If analog setting mode is selected, (P0.09=4, 5 or 6), this function is used to switch reference channel.

P0.09=4:

If this terminal is OFF, reference signal is decided by settings of master given

If this terminal is ON, reference signal is decided by settings of panel potentiometer

P0.09=5:

If this terminal is OFF, reference signal is decided by settings of master given

If this terminal is ON, reference signal is decided by settings of panel potentiometer +auxiliary given

P0.09=6:

If this terminal is OFF, reference signal is decided by settings of master given

If this terminal is ON, reference signal is decided by settings of panel potentiometer -auxiliary given

12.20: Start traverse operation

If the traverse operation is set to manual start, then traverse function is enabled if this function

isselected. Refer to Pb parameter group for details.

13.22: DC braking command

When the inverter is in Dec-to-stop process, and the running frequency is lower than initial frequency of DC injection braking defined in P1.06, this function is enabled. When the terminal is ON, DC injection braking isperformed under braking voltage defined in P1.08. DC injection braking is ended onlywhen the terminal is OFF.

When this function is enabled, parameters of DC injection braking time are invalid.

14.23: Acc/Dec disabled command

When the terminal is ON, the invertertemporarily inhibits executing the Acc/Deccommand and runs at current frequency. When the terminal is OFF, normal Acc/Deccommands can be executed. If there is anycontrol signal with higher priority input such asexternal fault signal, the inverter will exitAcc/Dec inhibit state immediately and executespecified processing procedures.

15.24: Switch between panel control mode and externalterminal control mode

This function is used for selecting the physicschannel that inputs inverter's running controlcommand:Selecting between keypad and external terminal to input control commands.

Commands input via external terminals includeFWD, REV, JOGF, JOGR, RUN and STOP.

This function is used in conjunction with ON/OFF stateand the setting value of P0.01.

F0.01	Terminal state	Source of control command
0	ON	Externalterminals
0	OFF	Keypad
1	ON	Keypad
1	OFF	Externalterminals

The control logic is shown in the Table below.

This function is enabled during running state. User should pay attention to the drive's running status after switching.

If the drive is in keypad control mode first, connect the terminal (ON), there are 2 cases: if running command from external terminal is valid, such as FWD terminal is ON in two-wire control mode, then the drive's operation state will not change; if running command from external terminal is invalid, the drive will stop running.

16. 25: Switch between panel control mode and externalterminal control mode

This function is used for selecting the physicschannel that inputs inverter's running controlcommand:Selecting between keypad and external terminal to input control commands.

Commands input via external terminals includeFWD, REV, JOGF, JOGR, RUN and STOP.

This function is used in conjunction with ON/OFF stateand the setting value of P0.01.

The control logic is shown in the Table below.

P0.01	Terminal state	Source of control command
0	ON	Externalterminals
0	OFF	Keypad
1	ON	Keypad
1	OFF	Externalterminals

17.26: Counter trig signal

It is the input terminal of the drive's internal counter. If the input signal of theterminal changes from ON to OFF, thecounting value is increased by 1.

18.27: Counter reset signal

This terminal is used to clearthe inverter's internal counter, and is used inconjunction with Function 24 "Counter trigsignal".

When the terminal is ON, internal counter iscleared to 0.

19. 28: PID dormancy waking up

When PA.17=2 and this terminal is ON, PID control will exit dormancy state and execute normal PID function.

20. 29: switch between PID positive mode and negative mode:

When PA.00 is set to 0, PID positive mode is selected with the terminal is off ; negative mode selected with the terminal is on.

21. 30:"Emergence stop"

If the terminal defined with the function is on, the inverter is in emergence stopstatus(motor free stop)

P6.09	Programmable relay 1	Setting range: 0~20
P6.10	Output terminal Y1 definition	Setting range: 0~20

Function selection of programmable relay output terminals and open collector output terminals is

shown in the table below.

Conten	Function	Content	Function
t			
0	Programmable relay 1: No operation	11	Over voltage stall
	Output terminal Y1: No operation		
1	Drive ready	12	External stoppingcommand
2	Drive running signal1	13	Preset counting value arriving
3	Drive running signal2	14	Specified counting value arriving
4	Frequency arriving signal	15	Low voltage lockup signal
5	Frequency detection threshold 1	16	Overload pre-alarm
6	Frequency detection threshold 2	17	Drive failure signal
7	High limit frequency arriving	18	Zero speed running
8	Low limit frequency arriving	19	Program running completed
9	Overload signal	20	PG cable broken
10	Over current stall		

Functions in the table above are described as following:

- 0 0: No function is defined by programmable relay output terminal 1, and open collector output terminal Y1. is defined as frequency signal output.
- 1 1: Drive ready

The drive is in normal waiting state, and terminals output indication signal.

2 2: Drive running signa l

The drive is in running state, and the terminal outputs indication signal.

3 3: Drive running signa2

In run status, when the drive's output frequency is 0Hz, the terminal does not output indication signal; when the drive's output frequency is above 0Hz, the terminal does output indication signal

4 4: Frequency arriving signal

When the drive's output frequency arrives preset frequency, the terminal outputs indication signal.

It is used in conjunction with parameter P6.11.

5 5~6: Frequency detection threshold 1 and 2

When the drive's output frequency arrives specified value, the terminal outputs indication signal,

which is used inconjunction with parameters P6.12~P6.15.

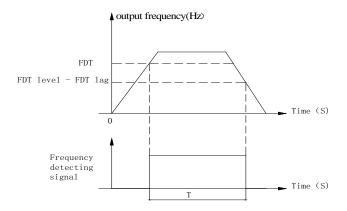


Fig. 6-21 Frequency detection threshold 1 and 2

6 7:High limit frequency arriving

When the drive's output frequency reaches high limit frequency, the terminal outputs indication signal.

7 8: Low limit frequency arriving

When the drive's output frequency reaches low limit frequency, the terminal outputs indication signal.

8 9: Overload signal

When overload occurs, the terminal outputs indication signal.

9 10: Over current stall

When over current stall occurs in running state, terminal outputs indication signal.

10 11: Over voltage stall

When over voltage stall occurs in running state, the terminal outputs indication signal.

11 12: External stoppingcommand

During running process, when external fault signal is received by the digital input terminals, the drive reports

ER11 fault, and the terminal outputs indication signal at the same time.

12 13: Preset counting value arriving

Set up counting value of the drive's internal counter. The drive inputs counting pulses via external

terminals Dli (I=1~5),and the drive's internal counter counts this signal. When the preset value arrives, Yi outputs an indication signal. When the next external counting pulse signal arrives,Yi 's output signal recovers, and the counter restarts to count again at the same time.

13 14: Specified counting value arriving

When Dli inputsexternal counting pulse signal and the countingvalue reaches specified value defined by p6.17 (See Fig. 6-22), Y1 outputsan indication signal, Y1 does not recover until speicified value arrives.

As shown in Fig. 6-22, if P6.16=5, P6.17=3, when Dliinputs the 3th pulse, Y1 outputs anindication signal. When Dli inputs the 5th pulse, Y1 outputs specified value arriving signal. Y1 will recover when the 6th pulse arrives.

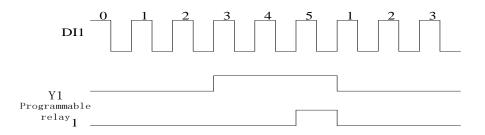


Fig. 6-22 Preset counting value arriving and specified counting value arriving

14 15: Low voltage lockup signal

When DC busvoltage is lower than the low voltage limit, the panel LED displays "LU", and the terminal outputs indication signal at the same time.

15 16: Overload pre-alarm

According to PD.04~PD.06overload pre-alarm setup, when the output current is higher than thesetting value,

the terminal outputs indicationsignal.

16 17: Drive failure signal

When fault occurs, the terminal outputs indication signal

17 18: Zero speed running

When the drive's running frequency is zero, the terminal outputs indication signal.

For example, in the following three conditions the terminals output indication signal:

- FWD/REV dead time running period;
- The phase when the setup frequency islower than the start frequency when theinverter starts from zero frequency;
- In Dec process output frequency is lowerthan initial frequency of DC injectionbraking.
- 18 19:End signal of stage of program operation

In program operation mode, when a stage is finished, the inverter outputs a pulse with width of 250ms.

19 20: End signal of stage of program operation

In program operation mode, when a cycle is finished, the inverter outputs a pulse with width of 250ms.

P6.11 Frequency arriving width (FAR)	Setting range:0.0~10.00Hz	
1 0.11 Trequency annung width (FAR)	Detting range.0.0 10.00112	

When output terminal function is selected as frequency arriving signal, this function is used to detect output frequency range. When error between output frequency and setting value is less than FAR, the terminal outputs indication signal, as shown in Fig.6-24.

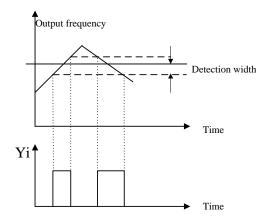


Fig.6-24 FAR and FAR detection width

P6.12 FDT1 level	Setting range: 0.0 \sim 600.0Hz
P6.13 FDT1 lag	Setting range: 0.0~10.00Hz
P6.14 FDT2 level	Setting range: 0.0 \sim 600.0Hz
P6.15 FDT2 lag	Setting range: 0.0~10.00Hz

If output frequency exceeds certain value, the terminal outputs indication signal, and this signal is called FDT level.

If output frequency decreases, the terminal continues to outputs indication signal, until the output frequency is lowered to the FDT signal width and exceeds certain width, this width is called FDT signal lag, as shown in Fig.6-21 and 6-23.

P6.16 Preset value arriving	Setting range:0~9999
P6.17Specified value arriving	Setting range:0 \sim 9999

For P6.16 and P6.17 function, please refer to definition of terminal function 13, 14.

P6.18 Terminal logic	Setting range:0~255
----------------------	---------------------

This parameter defines positive or negative logic of terminals.

Y1	RESERVE	RESERVED	DI5	DI4	DI3	DI2	DI1
	D						
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Note:

- If bit 0 is set to 0, it means positive logic, and 1 for negative logic. Factory setting of all terminals are positive logic;
- In positive logic mode, terminal DIi is enabled if it is connected to the common terminal, and disabled if disconnected;

In negative logic mode, terminal DIi is disabled if it is connected to the common terminal, and enabled if disconnected;

In positive logic mode, terminal Yi closes when its output signal is valid;

In negative logic mode, terminal Yi opens when its output signal is valid;

Only decimal number can be set to the drive (including display). When negative logic is selected, conversion from binary code to Hex value isshown as below:

Setting value == $(2*Y1)^{7}$ + $(2*DI5)^{4}$ + $(2*DI4)^{3}$ + $(2*DI3)^{2}$ + $(2*DI2)^{1}$ +DI1 For example,

if DI5 and DI4 select negative logic and others are positive logic, then:

Setting value = $(2^{*}1)^{4}$ + $(2^{*}1)^{3}$ + $(2^{*}0)^{2}$ + $(2^{*}0)^{1}$ +0=16+8=24

P7 Analog input terminal function

P7.00	Al1 filter time	Setting range: 0.05-5.00S
P7.01	Minimum Al1	0.0-100.0%(10V)
P7.02	Frequency corresponding to P7.06	0.00 ~ Maximum frequency
P7.03	Maximum Al1	0.0-100.0%(10V)
P7.04	Frequency corresponding to P7.08	0.00 ~ Maximum frequency

P7.05	Al2 filter time	Setting range: 0.05-5.00s
P7.06	Minimum Al2	0.0-100.0%(10V/20mA)
P7.07	Frequency corresponding to P7.06	0.00 ~ Maximum frequency
P7.08	Maximum AI2	0.0-100.0%(10V/20mA)
P7.09	Frequency corresponding to P7.09	0.00 ~ Maximum frequency

Reference signal from external input (Al1, Al2) is filtered and amplified, and then its relationship with frequency setting is shown as curve 1 in Fig. 6-25 or curve 2 in Fig.6-26.

Al2 can input current signal (4~20mA), P7.06 should be set to 20% except that S1 (Al2) is in "I" position,

P7.10 FWD/REV dead time range	Setting range: 0~10% Maximum input signal
P7.10 FWD/REV dead time range	Setting range: 0~10% Maximum input signal

If polarity control is selected (P0.06= 2 or 3), FWD/REV dead time is set by this parameter. Refer to parameter P0.06 and fig 6-1 for details.

P7.11	Al0 filter time	Setting range: 0.05-5.00S
P7.12	Minimum Al0	0.0-100.0%
P7.13	Frequency corresponding toP7.12	0.00 ~ Maximum frequency
P7.14	Maximum Al0	0.0-100.0%
P7.15	Frequency corresponding to P7.13	0.00 ~ Maximum frequency

Reference signal(Al1) from keypad potentiometer is filtered and amplified, and then its relationship with frequency setting is shown as curve 1 in Fig. 6-25 or curve 2 in Fig. 6-26.

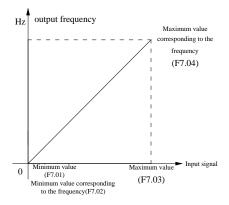


Fig. 6-25 curve 1: relationship between reference and frequency setting

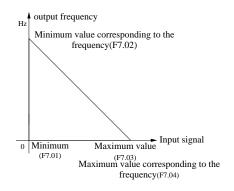


Fig. 6-26 curve 2: relationship between reference and frequency setting

P8 Analog output terminal

P8.00 AO1 output selection	Setting range:0~9
P8.01 AO2 output selection	Setting range:0~9

Inverter's state represented by analog outputsignal is defined by the function codes P8.00 and P8.01,

as shown below.

P8.00/P8.01	Drive state	Description
0	Running frequency/speed	0~ highest running frequency/speed
1	Frequency setting/speed	0~ highest running frequency/speed

2	Output current	0~ 2×rated current
3	Output voltage	0~+200% rated voltage
4	Output torque	-200%~+200% rated torque current
5	PI reference	0~10V
6	PI feedback	0~10V
7	Bus voltage	0-800V
8	Analog input Al1	0-10V
9	Analog input AI2	0-10V

P8.02	Minimum AO1	Setting range:0.00~100.0%
P8.03	Minimum value corresponding to F8.02	Setting range:0.00~100.0%
P8.04	Maximum AO1	Setting range:0.00~100.0%
P8.05	Maximum value corresponding to F8.04	Setting range:0.00~100.0%

This function code is used to setup maximum/minimum value of analog output signal (0~10V), and the relationship between these values and P8.00 is shown in Fig. 6-27 and 6-28.

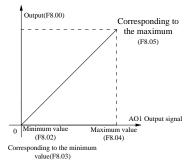


Fig. 6-27 Relationship between maximum/minimum AO1 and F8.00

For example, connect AO1 with a voltage meter (range: 0~5V) to indicate operating frequency, and the range of operating frequency is 0~50Hz (Maximum frequency=50Hz), then F8.00=0(=frequency), F8.02=0(=0V), F8.03=0(0Hz), F8.04=50%(=5V), F8.05=100%(=50Hz).

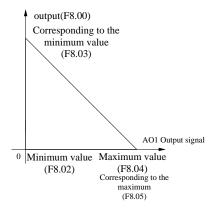


Fig. 6-28 Relationship between maximum/minimum AO1 and F8.00

P9 Program operating parameters

P9 parameter group is function code of programming operation.

Both programming operation and multi-frequency operation are used for realizing the inverter's variable speed running according to certain regulations.

One cycle of programming operation is shown in Fig. 6-29, $f1 \sim f7$ and $T1 \sim T7$ will be defined in the following function codes.

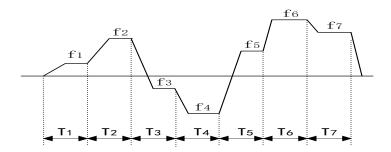


Fig. 6-29 Programming operation

P9.00 Programming operation function	Setting range:0, 1,2
--------------------------------------	----------------------

0: Single cycle (Stop after a single cycle)

- 1: Continuous cycle (Continue cycle operation according to setup phase parameters)
- 2: Maintain the final value (maintain the non-zero operating frequency of last stage after completing one cycle)

P9.01 Programming operation time setting unit	Setting range:0、1
1 3.01 Trogramming operation time setting unit	

0: second

1: minute

P9.02 Stage timing T1	Setting range: 0.0~3600.0
P9.03 Stage timing T2	Setting range: 0.0~3600.0
P9.04 Stage timing T3	Setting range: 0.0~3600.0
P9.05 Stage timing T4	Setting range: 0.0~3600.0
P9.06 Stage timing T5	Setting range: 0.0~3600.0
P9.07 Stage timing T6	Setting range: 0.0~3600.0
P9.08 Stage timingT7	Setting range: 0.0~3600.0
P9.09 Stage timingT8	Setting range: 0.0~3600.0
P9.10 Stage timingT9	Setting range: 0.0~3600.0
P9.11 Stage timingT10	Setting range: 0.0~3600.0
P9.12 Stage timingT11	Setting range: 0.0~3600.0
P9.13 Stage timingT12	Setting range: 0.0~3600.0
P9.14 Stage timingT13	Setting range: 0.0~3600.0
P9.15 Stage timingT14	Setting range: 0.0~3600.0
P9.16 Stage timingT15	Setting range: 0.0~3600.0

Parameters P9.02~P9.16 are used to set running time of each stage.

P9.17 T1Running mode	Setting range: 0~7
P9.18 T2Running mode	Setting range: $0 \sim 7$
P9.19 T3Running mode	Setting range: 0~7
P9.20 T4Running mode	Setting range: 0~7
P9.21 T5Running mode	Setting range: 0~7

P9.22	T6Running mode	Setting range: 0~7
P9.23	T7Running mode	Setting range: 0~7
P9.24	T8Running mode	Setting range: 0~7
P9.25	T9Running mode	Setting range: 0~7
P9.26	T10Running mode	Setting range: 0~7
P9.27	T11Running mode	Setting range: 0~7
P9.28	T12Running mode	Setting range: 0~7
P9.29	T13Running mode	Setting range: 0~7
P9.30	T14Running mode	Setting range: 0~7
P9.31	T15Running mode	Setting range: 0~7

P9.17~P9.31 are used to set operating direction and Acc time of each stage:

0 : Run forward Acc/Dec time is 1; 1: Run forward Acc/Dec time is 2; 2 : Run forward Acc/Dec time is 3; 3: Run forward Acc/Dec time is 4;4 : Run reverse Acc/Dec time is 1; 5 : Run reverse Acc/Dec time is 2; 6 : Run reverse Acc/Dec time is 3; 7 : Run reverse Acc/Dec time is 4;

0: Record function disabled

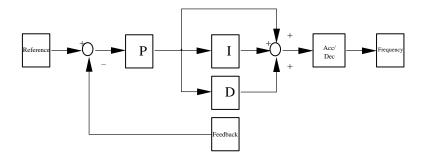
In programming operation state, if user press stop key, counter value of present program will not be recorded. Input running command again, program will run from the first stage.

1: Record function enabled

In programming operation state, program will pause when stop key is pressed. Input running command again, program will run from the breakpoint.

When the drive stops, user can clear counter value of current program by setting function code P9.00 again.

2: Record function enabled ,


In programming operation state, program will pause when stop key is pressed. Input running command again, program will run from the breakpoint,

When the drive stops, user can clear counter value of current program by setting function code P9.00 again.

PA PID parameter

FA parameter group defines parameters of PID control function.

PID control function diagram is shown below, where P is proportional gain, I is integration time, D is differential time.

0: Positive characteristic

The Motor speed is required to increases with thereference speed.

1: Negativecharacteristic

The motor speed isrequired to decrease when the reference value increases.

PA.01 Reference selection	Setting range: 0、1、2、3
---------------------------	------------------------

- 0:Panel Digital setting
- 1: External analog signal Al1
- 2: External analog signal AI2
- 3:Rs-485 communication setting

PA.02 Feedback channel selection	Setting range: 0、1
----------------------------------	--------------------

- 1: External analog signal Al1 (0~10V)
- 2: Analog signal AI2 (0~10V or 4~20mA)

PA.03 Digital setting of reference	Setting range: 0.00V~10.00V
------------------------------------	-----------------------------

Digital reference is set by UP/DOWN keypad.

PA.04 Minimum referenc	Setting range: 0.0~100.0%
PA.05 Maximum reference	Setting range: 0.0~150.0%
PA.06 Minimum feedback	Setting range: 0.0~100.0%
PA.07 Minimum feedback	Setting range: 0.0~150.0%

By setting parameter PA.04~PA.07, actual value of reference and feedback can be displayed accurately.

PA.08 Proportional gain	Setting range:0.0~10.00
PA.09 Integration timeTi	Setting range:0.00(no integration) \sim 99.99s
PA.10 Integration timeTi	Setting range:0.00(no differentiation) \sim 99.99s
PA.11 Sample cycle T	Setting range:0.00(do not specify T)~99.99s

Setup parameters of PID regulator

PA.12 Error limit	Setting range: 0.0 \sim 15.0% ((corresponding to close loop input))
-------------------	---

Definition: relative error of close loop system = | input value - feedback value | / inputvalue×100%.

If relative error of close loop system is biggerthan the setting value of error limit, then the PID regulator will adjust the error.

If relative error of close loop system is in the setting range of error limit, then stop PIDregulating, PID regulator's output maintainsconstant.

PA.13 Level of abnormal feedback signal Setting range: 0~100%

This function code defines abnormal level of feedback signal.

Definition: Abnormal level = |reference - feedback|/reference×100%

This function code defines the detection time of abnormal feedback signal. When feedback signal exceeds abnormal level and hold time exceeds the detection time, action at abnormal signal (ER.06) will be executed. When this parameter is set to 0, the abnormal feedback signal detect function is disable.

PA.15 Reserved	
----------------	--

PA.16	PID Sleep control
-------	-------------------

Setting range: 0~2

0: No sleep function;

1: Internal waking up, which is controlled by parameters PA.17~PA.20;

2: External input terminal, which is controlled by terminal function 26 (PID waking terminal), is decided by parameter P6.02~P6.08.

PA.17 Delay time of sleeping	Setting range: 0.0~3600S
PA.18 Sleeping frequency	Setting range: 0.0~600.0Hz
PA.19 Delay time of waking	Setting range: 0.0~60S

PA.20 Waking value Setting range: 0.0~100% actual value

For PID control, parameters PA.17~ PA.20 define delay time of sleeping, sleeping frequency, delay time of waking and waking value.

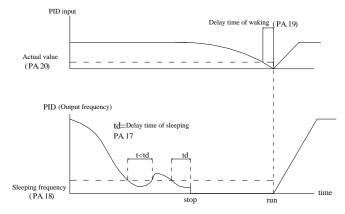


Fig. 6-30 PID sleeping and waking

Pb Traverse function

Pb.00 Traverse mode	Setting range: 0、1
---------------------	--------------------

0: Auto mode

At first, the drive operates at preset frequency oftraverse operation (Pb.01) for certain time (Pb.02),

andthen enter traverse mode automatically.

1: Manual mode

If the multi-function terminal (DIi is set to terminal function 20) is enabled, the drive will enter traverse mode. If theterminal is disabled, the drive will exit traverse operationand operate at the preset traverse frequency (Pb.01).

Pb.01 Preset traverse frequency	Setting range: 0.00~600.0Hz
Pb.02 Hold time of preset traverse frequency	Setting range: 0.0~3600s

Pb.01 defines drive's operating frequency before entering traverse operation. In auto mode, Pb.02 defines the hold time of preset traverse frequency before traverse operation. In manual mode, Pb.02 setting is invalid. Refer to Fig. 6-31 for details.

Pb.03 Preset central frequency	Setting range: 0.00~400.0 Hz
--------------------------------	------------------------------

Traverse operation is shown in Fig. 6-31.

Pb.04 Travers amplitude	Setting range: 0.0~50%			
Travers amplitude = Preset central frequency×Fb.04				
Pb.05 Step frequency	Setting range: 0.0~50%			
Refer to Fig. 6-31. If it is set at 0, then there willbe no step frequency.				
Pb.06 Traverse cycle	Setting range: 0.1~999.9S			
It defines the period of traverse operationincluding rising and falling time.				
Pb.07 Rise time oftriangular wave	Setting range: 0.0~100.0%			

It defines the rising time (Pb.06×Pb.07 s) of traverse operation, and falling time (Fb.06×(1-Fb.07) s).

Please refer to Fig. 6-31.

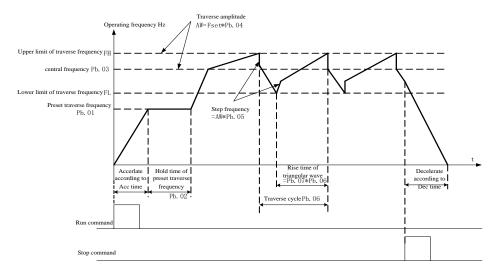


Fig. 6-31 Traverse operation

PC Communication and Bus control function

	Pc.00 Baud	rate selection			Se	tting range: 0 \sim 5	
	Select baud	rate of serial co	mmnication				
	0:1200BPS	1:2400 BPS	2:4800 BPS	3:9600 BF	PS	4:19200 BPS5:38400 BPS	
	Pc.01 Data	Format			Se	tting range: 0 \sim 8	
Data format of serial communication protocol:							

0: 8,N,2 For RTU (MODBUS) (Default)

- 1: 8,E,1 For RTU (MODBUS)
- 2: 8,O,1 For RTU (MODBUS)
- 3: 7,N,2 For ASCII (MODBUS)
- 4: 7,E,1 For ASCII (MODBUS)
- 5: 7,O,1 For ASCII (MODBUS)
- 6: 8,N,1 free communication format
- 7: 8,E,1 free communication format
- 8: 8,O,1 free communication format
- 9: 8,N,2 For RTU (MODBUS) master model

Pc.02 Local address	Setting range: 1~32
---------------------	---------------------

When the host is communicating with several inverters, inverter's address is defined in this function code.

The setting value is 0:No communicationovertime protection.

The setting value isn't 0, in RS485communication control mode, if the communication between the

inverter and thehost is still abnormal in the time defined by Pc.03, ER05 fault is displayed and the

inverteracts according to the setting value of Pc.05.

Pc.04 Response delaySetting range: 0 ~1000ms	Pc.04 Response delay	Setting range: 0 ~1000ms
--	----------------------	--------------------------

Response delay refers to the time from the drivereceiving and executing the command of the hosto

returning reply frame to the host.

Pc.05 EEROM Store function Setting range: 0、1

0: The parameter is stored into EEROM in communication.

I: The parameter is not stored into EEROM in communication.

Pd Faults and protection parameters

Pd.00 Motor overloadprotection mode	Setting range: 0, 1, 2
-------------------------------------	------------------------

0: No protection

1: Common motor protection

Since cooling conditions of common motordeteriorates at low speed, please lower the motor's

thermalprotection threshold at this time.

2: Variable frequency motor protection

Since the variable frequency motorapplies forced air-cooling, the protection parametersneedn't be adjusted during low speed running.

Pd.01 Motor overloadprotection factor	Setting range: 20.0%-150.0%	

Heat dissipation becomes worse at low frequency, and high temperature will reduce service life of the motor. Through setting threshold of the electronic thermal overload relay, overload current and current limit will be proportionally adjusted.

When motor capacity is lower than that of the drive, this function is used provide overheat protection for the motor.

When several motors are driven by the same variable speed drive, this function is disabled. When display readings reaches 100%, overload protection will be trigged

Pd.02 Over voltage stall selection Setting range: 0,1

Over voltage stall selection

0: Disabled; 1:Enabled

In inverter's Dec process, the actual motorspeed may be higher than the outputsynchronized speed of the inverter due to theload inertia. At this time, the motor will feed the energy back to the inverter, resulting in the voltage rise on the inverter's DC bus. If nomeasures being taken, tripping will occur due to over voltage.

The overvoltage stall protection function is thatduring the Dec running, the inverter detects thebus voltage and compares it with the stallovervoltage point defined by PD.03. If the busvoltage exceeds the stall overvoltage point, theinverter will stop reducing its output frequency. When the detected bus voltage is lower than the point, the Dec running will be restored, asshown in Fig.6-32.

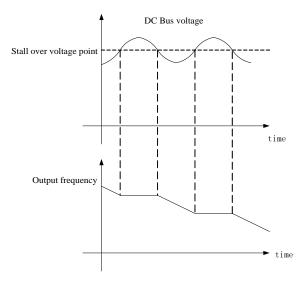


Fig. 6-32 Over voltage stall function

Pd.03 Stall over voltage point	Setting range: 115.0%~150.0%
Stall over ovtage point = 115.0%~150.0% inverter's rated peak voltage	

Pd.04 Selection of overload pre-alarm detection	Setting range: 0, 1
---	---------------------

0:Overload is only monitored during constant speed operation, and alarms when overload occurs;

Pd.05 Overload detection threshold	Setting range: 20-180%
Pd.06 Overload pre-alarm delay	Setting range: 0-60.0s

PD.05 defines the threshold value for overload alarm. It is a percentage of rated current.

Pd.07 Auto current limiting threshold	Setting range: 20.0 $\sim\!$ 150.0% (drive's
	rated output current)
Pd.08 Frequency decrease rate during	Setting range: 0.00-99.99Hz/S
Pd.09 Action mode of auto current limiting	Setting range: 0, 1, 2

Auto current limiting function is used to limit theload current under the preset current (PD.07) in real timeto avoid trip due to over-current. This function isespecially useful for the applications of larger loadinertia or sharp change of load.

PD.07 defines the threshold for current limiting. Itssetting is a percentage of drive's rated current le. PD.08 defines the decreasing rate of output/frequency when the drive is in auto currentlimiting status. If PD.08 is set too small, overload fault may occur. If PD.08 is set too big, the drive may be in energygeneration status for long time that may result inovervoltage protection.

The action mode of auto current limiting functionis decided by PD.09:

PD.09= 0: disabled;

PD.09= 1:auto current limiting is effective duringacceleration or deceleration but ineffective

atconstant speed;

PD.09= 2: auto current limiting is effective duringacceleration/deceleration and constant speed;

	Pd.10 Auto reset	Setting range: $0{\sim}5$
--	------------------	---------------------------

0: disabled; 1~5: times of fault reset;

|--|

When fault occurs, the drive stops output. After the time defined by PD.11, the drive resets fault automatically and continue running.

PD.10 defines the times of auto fault reset. If PD.10=0, auto reset function is disabled, and user can only reset fault in manual mode.

Pd.12 Relay action in Auto reset	Setting range: 0、1
----------------------------------	--------------------

This parameter determine the relay action in auto reset period of the inverter.

- 0: no action
- 1: action

Pd.13Act selection at undervoltage fault	Setting range: 0, 1, 2

0: When undervoltage occurs, fault relay does not act, and fault code will not be saved.

- 1: When undervoltage occurs during running, fault relay acts and fault code will be saved. When undervoltage occurs during stop state, fault relay does not act, and fault code will not be saved.
- When undervoltage occurs in running or stopping state, fault relay acts and fault code will be saved.

Pd.14Input missing phase (valid for 132kw model)	Setting range: 0~1
--	--------------------

0: Disabled; No input phase protection function

1: Enabled; Allow input phase protection (three-phase power input is valid)

Pd.15Output missing phase (valid for 132kw model) Setting range: 0~1

0: Disabled;No output phase protection function

1: Enabled; Allow output phase protection (three-phase power input is valid)

Pd.16 Under voltage point	380V voltage level Setting range: 250 \sim
	440 220V voltage level Setting range:
	200~260

380V voltage level :default value is 400v(DC voltage).

220V voltage level :default value is 250v(DC voltage).

In some case when the input voltage is low or not stable, the value can be adjusted to avoid under voltage fault.

PE Factory reserved

PE.00 Keyboard frequency setting lock function	Setting range: 0~1	
--	--------------------	--

0: Keyboard frequency settings are not locked, you can change the frequency of the inverter settings

by keyboard keys;

1: The keyboard frequency setting lock can not change the frequency setting frequency of the

inverter through the keyboard up and down key, and can only change the frequency setting frequency of the

converter by changing the P0.11

PE.01 Terminal start delay	Setting range: 0.0~20.0s
----------------------------	--------------------------

Used to set the setting Di terminal from breaking to the closed state changes, the frequency converter

for the delay time of the change

PE.02 Terminal stop delay	Setting range: 0.0~20.0s
---------------------------	--------------------------

Used to set the di terminal from the closed to the broken state changes, the frequency converter for the

delay time of the change

PE.03 MUDBUSrespond	Setting range: 0~1
---------------------	--------------------

0: MODBUS protocol response write command

1: MODBUS protocol does not respond to the write command

PE.04 Acceleration and deceleration time switching	Setting range: 0.00~600.00Hz
frequency	

When the deceleration time switching frequency is 0, according to the 1 inverter deceleration time operation, deceleration time switching frequency is not 0, when the operation frequency is less than pe.04,

according to the first deceleration time operation, when the operation frequency is greater than pe.04, in accordance with the second plus deceleration time operation.

PE.05 is reserved for special users

PF Factory reserved

 $\mathsf{PF.00}{\sim}\mathsf{PF.19}$ are reserved parameters for individual consumer.

PH Display function

Ph.oo running displayparameters selection Setting range: 0 ~ 14	PH.00 running displayparameters selection	Setting range: 0~14
---	---	---------------------

HV390 drive has 15 state parameters in running state. User can scroll through them by pressing ►► key during running process. Function code PH.00 defines the default display parameter after starting, which includes:

- 0: Frequency setting
- 1: Running frequency
- 2: Output current
- 3: Output voltage
- 4: Bus voltage
- 5: Overload rate
- 6: Preset line speed
- 7: Running line speed
- 8: Output torque
- 9: PI reference
- 10:PI feedback
- 11:Reserved
- 12:Analog input Al1
- 13:Analog input Al2
- 14:I/O status(0~511)

Inpt/output IO status correspond as blow:

relay1	Y1	reserved	reserved	DI5	DI4	DI3	DI2	DI1
Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

	PH.01 Display parameters at stop	Setting range: 0~8
--	----------------------------------	--------------------

HV390 drive has 9 state parameters in stopping state. User can scroll through them by pressing **>>** key during stop state.

Function code PH.01 defines the default display parameter upon power on, which includes:

- 0: Frequency setting
- 1: Preset line speed
- 2: DC Bus voltage
- 3: Reserved
- 4: Analog input Al1
- 5: Analog input Al2
- 6: I/O status
- 7:external counting value
- 8: PI reference
- 9:PI feedback

PH.02Line speed factor	Setting range: 0.1~100
------------------------	------------------------

When line speed is displayed, line speed = Output frequency × Line speed factor

PH.03Inverter power

Display inverter power

PH.04 IPM heatsinktemperature 1	Setting range: 0∼100℃	
PH.05 IPM heatsinktemperature2	Setting range: 0~100℃	

Display IPM heatsink temperature.

Note: some models have this function

PH.061st fault type	Setting range:	
PH.072nd fault type	Setting range:	
PH.083rd fault type	Setting range:	

PH.06~PH.08 are used for memorizing thelatest three fault types, and can record thevoltage, current,

frequency and terminal stateat the last fault (in PH.09~PH.13) for checking.

Please refer to Chapter 7 for fault descriptions.

PH.09 Bus voltage at last fault (V)	Setting range: 0~999
PH.10 Output current at last fault (A)	Setting range: 0~999.9
PH.11Frequency setting at last fault (Hz)	Setting range: 0~400.0

PH.12Running frequency at last fault (Hz)	Setting range: 0~400.0
PH.13I/O state at last fault	Setting range: 0~511
PH.14Total operating time	Setting range: 0~9999
PH.15 Software version	Setting range: 0~9.99
PH.16Keyboard Software version	Setting range: 0~9.99

PH.13At last time, I/O Status correspond as blow:

relay1	Y1	reserved	reserved	DI5	DI4	DI3	DI2	DI1
Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Chapter 7 Fault diagnosis and troubleshooting

7.1 Fault query at fault

If control power supply is normal at fault, the drive will be in fault displaying status all the times. At this time, user can enter parameter group PH to get related information about the failure, such as output frequency, frequency setting, output current, rotating direction, operating condition, and the 3 latest faults, which is shown in the table below.

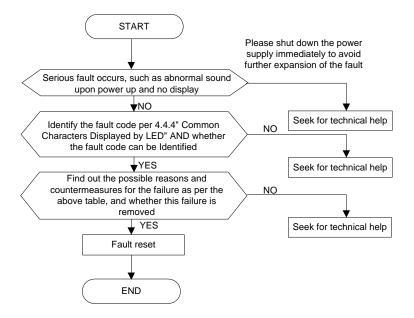
Fault code	Display content	Description
PH.06		1st fault type
□PH.07□	Fault code	2nd fault type
□PH.08□		3rd fault type
PH.09		Bus voltage at last fault
PH.10	Date (With unit)	Output current at last fault
PH.11		Frequency setting at last fault
PH.12		Running frequency at last fault
PH.13		I/0 terminal's state at last fault

7.2 List of Fault and Alarm Information

HV390 serial inverter is equipped with complete protection functions to provide efficient protection while utilizing its performance sufficiently. Some failure instructions may be displayed during operation. Compare the instructions with the following table and analyze, decide the causes and solve failures.

For damages on units or questions that can't be resolved, please contact with local distributors/agents, service centers or manufacturer for solutions.

Failur e No	Failure code	Failure description	Potential causes	Solutions
		Over current protection when acceleration operation	Low grid voltage	Check input power supply
			Startup too fast during motor operation	Restart after the motor stops rotating
			Rotating inertial of load is very large and shock load is very heavy	Increase the acceleration time and reduce the occurrences of sudden change of load
1	oc1		Improper setting of motor parameters	Set motor parameters properly
	open	oporation	Set start-up frequency too high	Decrease start-up frequency
			Acceleration time is too short	Lengthen acceleration time
			Set V/F curve ratio too large	Adjust V/F curve setting and torque boost


Failur e No	Failure code	Failure description	Potential causes	Solutions
			Power level of inverter is small	Replace with inverter with proper model
		Over current	Low grid voltage	Check input power supply
			Rotating inertial of load is too large	Choose appropriate energy braking components
2	oc2	protection when deceleration	Improper setting of motor parameters	Set motor parameters properly
		operation	Deceleration time is too short	Lengthen deceleration time
			Power level of inverter is small	Replace to inverter with proper model
		Over current	Sudden change of load during operation	Decrease load's abrupt frequency change and amplitude
3	oc3	protection when operation with	Improper setting of motor parameters	Set motor parameters properly
		constant speed	Power level of inverter is small	Replace to inverter with proper model
			Low grid voltage	Check input power supply
			Startup too fast during motor operation	Restart after the motor stops rotating
		Igbt module occ1 protection in Acc process	Rotating inertial of load is very large and shock load is very heavy	Increase the acceleration time and reduce the occurrences of sudden change of load
4	occ1		Improper setting of motor parameters	Set motor parameters properly
			Set start-up frequency too high	Decrease start-up frequency
			Acceleration time is too short	Lengthen acceleration time
			Set V/F curve ratio too large	Adjust V/F curve setting and torque boost
			Power level of inverter is small	Replace with inverter with proper model
			Low grid voltage	Check input power supply
		lqbt module	Rotating inertial of load is too large	Choose appropriate energy braking components
5	occ2	protection in Dec	Improper setting of motor parameters	Set motor parameters properly
		process	Deceleration time is too short	Lengthen deceleration time
			Power level of inverter is small	Replace to inverter with proper model
		lgbt module	Sudden change of load during operation	Decrease load's abrupt frequency change and amplitude
6	occ3	protection in constant speed	Improper setting of motor parameters	Set motor parameters properly
		process	Power level of inverter is small	Replace to inverter with proper model
		Over voltage	Motor short to ground	Check motor wiring
10	ou1	protection when	Abnormal input power supply voltage	Check input power supply
.0		acceleration operation	Fast start-up again when motor operates with high speed	Start again after the motor stop rotating
		Over voltage	Motor short to ground	Check motor wiring
11	ou2	protection when deceleration	Rotating inertial of load is too large	Choose appropriate energy braking components
		operation	Deceleration time is too short	Lengthen deceleration time
			•	

Failur e No	Failure code	Failure description	Potential causes	Solutions
12	ou3	Over voltage protection when operation with constant speed	Motor short to ground	Check motor wiring
12	12 000		Abnormal input power supply	Check input power supply
			Ambient over-temperature	Lower the ambient temperature and strengthen ventilation and radiation.
		Heatsink 2 over	Blockage of air duct	Clean the dusts, wools and other foreign objects in the air duct.
15	oH2	temperature protection	Fan failure	Check whether fan wirings are well connected. Replace a new fan of the same model.
			Inverter module failure	Seek for technical support
			Temperature detection circuit failure	Seek for technical support
16	LU	Power under voltage	The power voltage is lower than the minimum operating voltage of the equipment	Check input power supply
		i owor under verlage	The internal power source of the inverter is abnormal	Seek for technical support
		Heatsink 1 over 11 temperature protection	Ambient over-temperature	Lower the ambient temperature and strengthen ventilation and radiation.
	oH1		Blockage of air duct	Clean the dusts, wools and other
				foreign objects in the air duct.
17			Fan failure	Check whether fan wirings are well connected. Replace a new fan of the same
				model.
			Inverter module failure	Seek for technical support
			Temperature detection circuit failure	Seek for technical support
			Input power under voltage	Check input power supply
			Fast start-up when motor operates with high speed	Start again after the motor stop rotating
			Keep overloading for a long period of time	Shorten the overloading time and reduce load
18	oL1	Inverter overload protection	Acceleration and deceleration time is	Prolong the
		protection	too short	acceleration/deceleration time
			V/F curve ratio is set too large	Adjust V/F curve setting and torque boost
			Power level of inverter is small	Replace to inverter with proper model
			Input power under voltage	Check input power supply
		Materia	Motor rotation is blocked or load mutation occurs	Prevent the motor rotation from blocking and reduce the load mutation
19	oL2	oL2 Motor overload protection	Common motor maintains running under heavy load for a long period of time	Replace the common motor with variable frequency motor or improve the running frequency
				Motor overload protection time is set too small

Failur e No	Failure code	Failure description	Potential causes	Solutions
			V/F curve ratio is set too large	Adjust V/F curve setting and torque increment
			DC braking current is set too high	Reduce the DC brake current
20	LP	Input power failure	There is abnormal connection, missing connection or disconnection at the power terminal of the inverter	Check the power connections as per the operational regulations and eliminate the errors of missing connection and disconnection
21	SP	Abnormal output phase loss	There is abnormal connection, missing connection or disconnection at the output side of the inverter	Check the power connections at the output side of the inverter as per the operational regulations and eliminate the errors of missing connection and disconnection
22	ER01	EEPROM failure	EEPROM reading and writing failure	Seek for technical support
23	ER02	CPU failure	CPU failure	Seek for technical support
24	ER03	Keypad communication fault	Keypad or its control line failure;	Check the connection of Keypad and its control line.
		laan	CPU failure	Seek for technical support
25	ER04	Parameter setting failure	In traverse or three-wire operation mode, wrong parameter setting	Modify parameter setting
			The communication of terminal 485 is disconnected	Check the connection of the equipment communications
			The baud rate is set improperly	Set compatible baud rate
26	Communication ER05 abnormal 2 (Terminal 485)	The communication of terminal 485 is faulty	Check whether the data receiving and transmission complies with the protocol, whether the check sum is correct and whether the receiving and transmission interval complies with the requirements	
			The communication of terminal 485 is time-out	Check whether the communication timeout is set properly and confirm the communication cycle of the application program
			The failure alarm parameter is set improperly	Adjust the failure alarm parameter
		Analog close	Improper setting of FA	Modify setting of FA parameter group;
27	ER06	loop feedback	parameter group;	
21	EKUP	failure	Feedback signal lost	. Check feedback signal.
		Analog close		

Failur e No	Failure code	Failure description	Potential causes	Solutions
		loop feedback		
		failure		
			Improper setting of motor parameters;	Re-set the motor's rated parameters;
28	ER07	Tuning error	Significant deviation of parameters obtained after tuning comparing with the standard parameters;	Excute mtor aut-tuning again under zero load condition.
30	ER09	Current detection	Current sensor failure and	Check the current sensor
30	EKU9	failure	bad contact	
		Trial period is	Contact your supplier	Contact your supplier
32	END	outdated		
		External fault	Act trigger by external fault	Check external device
33	ER12			according external fault
				signal
		Overload	1. Refer to OL1 and OL2;	1. Refer to OL1 and OL2;
34	OL	pre-alarm	2. Improper setting of	2. Modify setting of
			Pd.04~Pd.06	Pd.04~Pd.06

7.3 Troubleshooting Procedures

Chapter 8 Routine Repair and Maintenance

The application environment (such as temperature, humidity, dust and powder, wool, smoke and oscillation), burning and wearing of internal devices and other factors may increase the possibilities of inverter failure. To reduce the failures and prolong the service life the inverter, it needs to conduct routine repair and periodic maintenance.

Note

1. Only the personnel receiving professional training can dismantle and replace the inverter components.

2. Prior to inspection and maintenance, please make sure that the power supply to the inverter has been shut down for at least ten minutes or the CHARGER indictor is OFF, or there may be risks of electric shock

3. Do not leave metal components and parts in the inverter, or it may damage the equipment.

8.1 Routine Maintenance

The inverter shall be used under the allowable conditions as recommended in this manual and its routine maintenance shall be conducted as per the table below.

Item	Inspection Contents	Inspection Means	Criteria
Operating Environment	Temperature	Thermometer	-10 ~ +40°C Derated at 40 to 50°C, and the rated output current shall be decreased by 1% for every temperature rise of 1°C.
	Humidity	Humidiometer	5 ~ 95%, no condensing
	Dust, oil, water and drop	Visual check	There are no dust, oil, water and drop.
	Vibration	Special test instrument	3.5mm, 2~ 9Hz; 10m/s²,9~ 200Hz; 15m/s²,200~ 500Hz
	Gas	Special test instrument, smell check and visual check	There are no abnormal smell and smoke.
Inverter	Overheat	Special test instrument	Exhaust normal
	Sound	Listen	There is no abnormal sound.
	Gas	Smell and visual check	There are no abnormal smell and smoke.
	Physical appearance	Visual check	The physical appearance is kept intact.
	Heatsink fan ventilation	Visual check	There are no fouling and wool that block the air duct.
	Input current	Amperemeter	In the allowable operating range. Refer to the nameplate.
	Input voltage	Voltmeter	In the allowable operating range. Refer to the nameplate.
	Output current	Amperemeter	In the rated value range. It can be overloaded for a short while.
	Output voltage	Voltmeter	In the rated value range.
Motor	Overheat	Special test instrument and smell.	There are no overheat fault and burning smell.
	Sound	Listen	There is no abnormal sound.
	Vibration	Special test instrument	There is no abnormal oscillation.

8.2 Periodic Maintenance

It needs to perform periodic inspection on the inverter once every three to six months according to the application environment and work conditions.

Item	Inspection Contents	Inspection Means	Criteria		
	Main circuit terminal	Screwdriver/sleeve	The screws are tightened and the cables are kept well.		
	PE terminal	Screwdriver/sleeve	The screws are tightened and the cables are kept well.		
	Control circuit terminal	Screwdriver	The screws are tightened and the cables are kept well.		
Inverter	Reliability of internal connections and connectors	Screwdriver and hands	Connection is firm and reliable.		
	Expansion card connector	Screwdriver and hands	Connection is firm and reliable.		
	Mounting screws	Screwdriver/sleeve	The screws are tightened.		
	Cleaning the dusts and powders	Cleaner	There are no dusts and wools.		
	Internal foreign objects	Visual check	There are no foreign objects.		
Motor	Insulation test	500VDC megameter	Normal		

8.3 Component Replacement

Different types of components have different service lives. The service lives of the components are subject to the environment and application conditions. Better working environment may prolong the service lives of the components. The cooling fan and electrolytic capacitor are vulnerable components and shall be conducted routine inspection as per the table below. If any fault occurs, please conduct immediate replacement.

Vulnerable Components	Damage Causes	Solutions	Items for Routine Inspection				
Fan	Bearing wear, blade aging	Change	The fan blade has no cracks and rotates normally. The screws are tightened.				
Electrolytic capacitor	Ambient temperature is relatively high and electrolyte volatilizes.	Change	There are no electrolyte leakage, color change, crack and shell inflation. The safety valve is normal. Static capacity is equal to or higher than the initial value times 0.85.				

!\Note

When the inverter is stored for a long period of time, power connection test shall be conducted once within two years and last at least five hours. It can use voltage regulator to gradually increase the value to the rated value when power connection is performed.

8.4 Insulation Test

Since the inverter has undergone insulation test upon its ex-factory, the user shall not perform such test as much as possible under general condition. If the test is unavoidable, please perform the test strictly according to the following procedures, or it may damage the inverter.

It shall perform dielectric test strictly, or it may damage the inverter. If the dielectric test is unavoidable, please contact our company.

- Main Circuit Insulation Test
 - Utilize 500VDC megameter to perform test under condition of main power shutdown;
 - Disconnect all the control board circuits to prevent the control circuits from connecting with the test voltage. For the inverter with power level of HV390-4T11G/15L and HV390-4T15G/18.5L, it must disconnect the terminal J1 on the drive board and the PE. For the inverter with power level of HV390-4T18.5G/22L or above, it must disconnect three pieces of cables entry to the surge absorption circuit. Pack the disconnected cable heads with insulating tapes properly;
 - The main circuit terminal shall be connected with public conducting wires:

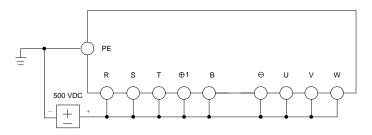


Fig:8-1 Main Circuit Insulation Test for HV390-0R4G1-2~HV390-2R2G1-2 、HV390-0R7G3~ HV390-015G3

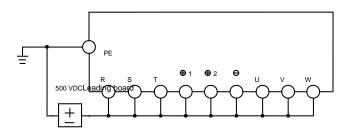


Fig:8-2 Main Circuit Insulation Test for HV390-018G3~HV390-400G3

- Megameter voltage can only be imposed between the public conducting wire of the main circuit and the PE terminal;
- The normal indication value of the megameter is $20M\Omega$ or above.

Appendix A Communication Protocol

1.Application range

Universal Variable Speed Drive connects with PLC or host computer via RS485 bus, which adopts single master and multi-slave network structure.

2. Physical description

Interface: RS485 Bus, asynchronous, half-duplex

Each segment on the network bus can have up to 32 stations.

2.1. Data format

- 0: 8,N,2 for RTU (MODBUS) (Default)
- 1: 8,E,1 for RTU (MODBUS)
- 2: 8,0,1 for RTU (MODBUS)
- 3: 7,N,2 for ASCII (MODBUS)
- 4: 7,E,1 for ASCII (MODBUS)
- 5: 7,O,1 for ASCII (MODBUS)
- 6: 8,N,1 free communication format
- 7: 8,E,1 free communication format
- 8: 8,O,1 free communication format

2.2. Baud rate

Available baud rate: 1200, 2400, 4800, 9600, 19200, 38400

The default value is 9600BPS.

2.3. Communication address

Slave address range: 1~32

2.4. Communication mode

The drive works as slave, and PLC or host computer works as master. Communication of master is polling, and the slave is in response mode.

2.5 Main function

a. Operation control:

Run, Stop, Jog start, Jog stop, free run to stop, Dec to Stop, fault reset, etc.

b. Operation monitor:

Running frequency, frequency setting, output voltage, output current, close loop feedback, close loop reference, etc.

c. Operation of function code:

Read and write value of function code, which includes:

Present running frequency, present frequency setting, output voltage, current, close loop feedback,

close loop reference, etc.

3.Free communication Protocol

3. 1 Data:

Character format:8, N, 1, 8 bit data, one bit stop, no parity

- 8, E, 1, 8 bit data, one bit stop, Even parity
- 8, O, 1, 8 bit data, one bit stop, Odd parity
- 1. A message from computer to inverter

| BYT |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| E0 | E1 | E2 | E3 | E4 | E5 | E6 | E7 | E8 | E9 | E10 |
| HD | AD | CD | OP | | DT | | CC | ON | ED | SUM |

Item	Byte Name	Detail							
HD	Start byte	02H, one byte							
AD	address	Inverter address, one byte, 0 is broadcast address							
CD	Parameter R/W	One byte							
	command	0h: no operation							
		1h: read parameter from the inverter							
		10h: write parameter from the inverter, not store into							
		eerom							
		11h: write parameter from the inverter, store into							
		eerom							
OP	Parameter number	Parameter number, two bytes, BYTE3 is lower byte,							
		BYTE4 is higher byte							
DT	Parameter value	Parameter value, two bytes, BYTE5 is lower byte,							
		BYTE6 is higher byte							
CON	Control word	Command word, two bytes,							
		BYTE7 is lower byte, BYTE8 is higher byte							

		Bits of BYTE7 are defined as following:						
		bit0 =1, run command						
		=0, no command						
		bit1 =1, forward						
		=0, reverse						
		bit2 =1, forward jog start						
		=0, forward jog stop						
		bit3 =1, reverse jog start						
		=0, reverse jog stop						
		bit4 0-》1, Fault reset command						
		bit5 reserved						
		bit6 =1, free stop command						
		=0, no command						
		bit7 =1, decrease stop command						
		=0, no command						
		BYTE8 reserved						
ED	End byte	A0H, one byte						
SUM	Xor check	Xor form BYTE1 to BYTE9						
	ge from the inverter to th							
. , , , , , , , , , , , , , , , , , , ,								

| BYT |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| E0 | E1 | E2 | E3 | E4 | E5 | E6 | E7 | E8 | E9 | E10 |
| HD | AD | СТ | OP | | DT | | ST | | ED | SUM |

Item	Byte name	Detail					
HD	Start byte	02H, one byte					
IN	address	Inverter address, one byte, 0 is broadcast address					
СТ	Parameter operation	One bye					
	status	0: success					
		1: data received is exceed the range					
		2: address is exceed the range					
		3: data can not be modified while inverter is running					
		4: data is read only, can not be modified					
OP	Parameter number	Parameter number, two bytes, BYTE3 is lower byte,					
		BYTE4 is higher byte					
DT	Parameter value, two bytes, BYTE5 is lower byte,						

		BYTE6 is higher byte
ST	Status word	Status word of the inverter, two bytes, BYTE7 is lower
		byte, BYTE8 is higher byte.
		Bits of BYTE7 are defined as following:
		bit0 =1, forward run
		=0, reserse run
		bit1 =1, inverter fault
		=0, inverter no fault
		bit2 =1, inverter running
		=0, inverter stop
		bit3 =1, data valid
		=0, data invalid
		bit4 =1, RS485 frequency setting
		=0, loacl frequency setting
		BYTE8 is the error code
ED	End byte	A0H, one byte
SUM	Xor check	Xor form BYTE1 to BYTE9

3. 2 Application note

1. The OP,DT,ST,CON in communication protocol are two bytes. The address calculation of OP is converting the parameter address of the parameter list to HEX value. For example, 270 parameter, convert to 10E in hex format; the lower byte of OP is 0eh; the higher byte of OP is 01h. Other parameters that are not listed in parameter table are as following table.

1000H	Status word	1001H	Errorcode	1002 H	Control word
1003H	Frequency setting	1004H	Running	1005H	Output current
			frequency		
1006H	Output voltage	1007H	DC bus voltage	1008H	Overload rate
1009H	Preset line speed	100AH	Running line	100BH	Output torque
			speed		
100CH	PI reference	100DH	PI feedback	100EH	reserved
100FH	Analog input Al1	1010H	Analog input	1011H	I/O status
			AI2		
1012H	External counting	1013H	PID Set		
	value				

2. For example, the computer set the set frequency of the inverter to 50.00Hz and send the run command to the inverter. The address of the inverter is 01h. The OP of the setting frequency is 1003h in hex format. The Setting frequency 50.00(5000) is converted to 1388h in hex format.

A message from computer to the inverter:

02H	01H	10H	03H	10H	88H	13H	03H	00H	A0H	3AH	
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	--

The inverter response:

02H	01H	00H	03H	10H	88H	13H	1DH	00H	A0H	34H	
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	--

3. 3 Fault and troubleshooting

1. The protocol provide Start byte, end byte , xor check means to essure the correctness of the communication.

2. There must be two bytes interval between two meaasge.

3. After the host issue a message, if the inverter does not response in seven bytes interval, the over time fault of communication takes place.

4. MODBUS Protocol

4.1 Character format

1. ASCII

_ . . .

Communication adopts hexadecimal system, and the valid ASCII characters are: "0"..."9", "A"..."F", which is expressed in hexadecimal format. Such as:

ASCII character: '0''1''2''3''4"5''6''7''8''9''A''B''C''D''E''F'

ASCII code (Hex):30H 31H 32H 33H 34H 35H 36H 37H 38H 39H 41H 42H 43H 44H 45H 46H

7,N,2														
start	0	1	2	3		4		5		6		stop	stop	
7,E,1	7,E,1													
start	0	1	2	3		4		5		6		even	stop	
7,0,1														
start	0	1	2	3		4		5		6		odd	stop	
2. RTU 8	2. RTU 8,N,2													
start	0	1	2	3	4		5		6		7	stop	stop	
8,E,1														
start	0	1	2	3	4		5		6		7	even	stop	
8,O,1	•	•	•									•		

8,0,1										
start	0	1	2	3	4	5	6	7	odd	stop

4.2 Function code

Function code	Description
03H	Read data
06H	Modify data
08H	Loop detection

2. Function code description

RTU

(1) Read data

Frame head and frame tail are used to ensure input time (without any information) larger than 10ms. Each time, reading data should be less than 30 bytes.

Message format of master request:

Slave	Function	Start addr	ess of data	Data	quantity	Red	undancy
address	code			(Unit	: word)	ch	eck
1 byte	03H	MSB	LSB	MSB	LSB	LSB	MSB

Message format of slave response:

Slave	Function	Data	Dat	a 1	 Dat	a n	Redu	ndancy
address	code	quantity					ch	eck
1 byte	03H	1 byte	MSB	LSB	 MSB	LSB	LSB	MSB

MSB: high byte of double byte number; LSB: low byte of double byte number.

(2) Modify data

Message format of master request:

Slave address	Function code	Start addr	ess of data	Modified	value	Redund	dancy check
1 byte	06H	MSB	LSB	MSB	LSB	LSB	MSB

Message format of slave response:

Slave address	Function code	Start addr	ess of data	Modified	value	Redund	dancy check
1 byte	06H	MSB	LSB	MSB	LSB	LSB	MSB

(3) Loop detection

The command is used to test whether communication between main control equipment (usually PC or PLC) and the drive is normal. After receiving data content, the drive will return it to main control equipment without any modifying.

ASCII:

(1) Read data:

Reading data should be less than 30 bytes at a time.

Message format of master request:

Frame	Slave a	ddress		ction	Da	ata a	ddre	SS	Da	ata q	uanti	ity	LR	C	Fram	e tail
head			CO	de												
÷	MSB	LSB	'0'	'3'	4	3	2	1	4	3	2	1	MSB	LSB	CR	LF

Message format of slave response:

Fram	ne	Slave a	ddress	Fund	ction	Da	ata a	ddre	SS	Di	ata q	uanti	ity	LR	C	Fram	e tail
head	d			со	de								,		-		
·.'		MSB	LSB	'0'	'3'	4	3	2	1	4	3	2	1	MSB	LSB	CR	LF

(2) Modify data:

Message format of master request:

	Frame	Slave a	ddrocc	Fund	ction		ata a	ddre		Mc	difio	d val		LR	C	Fram	o toil
	head	Slave a	uuress	со	de	Da	ala a	uure	55	IVIC	Juine	u vai	ue	LN	0	Fidili	e lali
ĺ		MSB	LSB	'0'	'6'	4	3	2	1	4	3	2	1	MSB	LSB	CR	LF

Message format of slave response:

Frame	Slave address	Function	Data address	Modified value	LRC	Frame tail
head	Slave address	code	Data address		ERO	i iame tan

: <u>.</u> '	MSB	LSB	'0'	'6'	4	3	2	1	4	3	2	1	MSB	LSB	CR	LF
--------------	-----	-----	-----	-----	---	---	---	---	---	---	---	---	-----	-----	----	----

3. Examples

(1) Function code 03H: Read parameter data

ASCII mode:

Format of query message:

Format of response message:

Starting character	(.)	Starting character	·,
			•
Slave address	ʻ0'	Slave address	ʻ0'
	'1'		'1'
Function code	ʻ0'	Function code	ʻ0'
	'3'		'3'
Data address	ʻ0'	Data address	'0'
	'2'		'0'
	ʻ0'		'0'
	ʻ0'		'2'
Data quantity	ʻ0'	Data content	'1'
(word)	ʻ0'		'5'
	ʻ0'		'5'
	'1'		ʻ9'
LRC	'F'	LRC	'8'
	ʻ9'		'C'
END	CR	END	CR
	LF		LF

RTU mode:

Format of query message: F

Format of response message:

Slave address	01H	Slave address	01H
Function code	03H	Function code	03H

Data address	02H	Data address	00H
	00H		02H
Data quantity	00H	Data content	15H
(Word)	01H		59H
Low byte CRC	85H	Low byte CRC	2AH
High byte CRC	B2H	High byte CRC	A0H

(2) Function code 06H: Write parameter data

ASCII mode:

Format of query message: Format of response message:

Starting character	(.)	Starting character	
Slave address	'0'	Slave address	'0'
	'1'		'1'
Function code	ʻ0'	Function code	'0'
	'6'		'6'
Data address	ʻ0'	Data address	'0'
	'1'		'1'
	ʻ0'		'0'
	'0'		'0'
Modified value	'1'	Modified value	'1'
	'7'		'7'
	'7'		'7'
	'0'		'0'
LRC	'7'	LRC	'7'
	'1'		'1'
END	CR	END	CR
	LF		LF

RTU mode:

Format of query message:

Format of response message:

Slave address	01H
Function code	06H
Data address	01H
	00H
Modified value	17H
	70H
Low byte CRC	86H
High byte CRC	22H

н
п
iΗ
Н
Н
Ή
Н
iΗ
Ή

(3) Function code 08H: loop detection

ASCII mode:

Format of query message:

Format of response message:

Starting character	<u>د.</u> ،	
Slave address	ʻ0'	
	'1'	
Function code	ʻ0'	
	'8'	
Sub-function code	ʻ0'	
	ʻ0'	
	ʻ0'	
	ʻ0'	
Data content	'1'	
	'2'	
	'A'	
	'B'	
LRC	'3'	
	'A'	
END	CR	
	LF	

Starting character	4.9
Slave address	·0'
	'1'
Function code	·0'
	'8'
Sub-function code	ʻ0'
	ʻ0'
	·0'
	·0'
Data content	'1'
	'2'
	'A'
	'B'
LRC	'3'
	'A'
END	CR
	LF

RTU mode:

Format of query message: For

Format of response message:

01H 08H 00H

00H 12H ABH ADH 14H

Slave address	01H	Slave address
Function code	08H	Function code
Sub-function code	00H	Sub-function code
	00H	
Data content	12H	Data content
	ABH	
Low byte CRC	ADH	Low byte CRC
High byte CRC	14H	High byte CRC

4.4 Control word and status word

1. Information of status word (2 bytes)(1000H)

Bit0	=1, FWD	
	=0, REV	
Bit1	=1, Drive failure	
	=0, No drive failure	
Bit2	=1, Running state	
	=0, Stopping state	
Bit3	=1, Modifying parameter valid	
	=0, Modifying parameter invalid	
Bit4	=1, Frequency setting via RS485	
	=0, Local frequency setting	
Bit5	=1, RS485 running control	
	=0, Local running control	

2. Information of status word (2 bytes) (1002H)

Bit0	=1, Running command		
	=0, No running command		

Bit1	=1, FWD	
	=0, REV	
Bit2	=1, Jog FWD	
	=0, Jog FWD and stop	
Bit3	=1, Jog REV	
	=0, Jog REV and stop	
Bit4	=1, Fault reset command	
	=0, No fault reset command	
Bit5	=1, Dec to stop command	
	=0, No Dec to stop command	
Bit6	=1, Free run to stop	
	=0, No free run to stop	
Bit7—bit15	Reserved	

3. Parameter address

Addres	Name	Addres	Name	Addres	Name
1000H	Status word	1001H	Errorcode	1002 H	Control word
1003H	Frequency setting	1004H	Running frequency	1005H	Output current
1006H	Output voltage	1007H	DC bus voltage	1008H	Overload rate
1009H	Preset line speed	100AH	Running line speed	100BH	Output torque
100CH	PI reference	100DH	PI feedback	100EH	reserved
100FH	Analog input Al1	1010H	Analog input Al2	1011H	I/O status
1012H	External counting value	1013H	PID closed loop setpoint		

4.5 Fault and troubleshooting

If communication fault occurs, the drive will response fault code, and report function code or 80H to the main control equipment.

For example:

ASCII mode:

RTU mode:

··'

Starting character

Slave address 01H

Slave address	'0'
	'1'
Function code	'8'
	'6'
Fault code	'0'
	'2'
LRC	'7'
	'7'
End character	CR
	LF

Function code	86H
Fault code	02H
Low byte CRC	СЗН
High byte CRC	A1H

Fault code:

01 Function code error:

Function code is invalid. In the protocol, valid function codes are: 03H, 06H or 08H.

- 02 Invalid data address: Dataaddress is invalid
- 03 Invalid data setting

Data value is invalid.

04 Invalid command:

In current state, the drive can not execute this command.

- 09 Wrong CRC check
- 11 Reserved
- 12 Message characters of the command string is too short
- 13 Command string is too long, and reading string should be less than 72 characters.
- 14 Contains non-ASCII character, non-starting character or non-CR, LF end character.

Additional information

1. Function code conversion

If preset data is n, then sending data n = nx(1/increment) (Refer to function parameters table)

Convert data "n" into HEX number, which is 2 bytes.

2. ASCII mode LRC check

In the example above, LRC check: 01H+03H+02H+00H+00H+01H=07H, and it's complement=F9H.

3. RTU mode CRC check

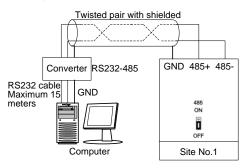
LRC check is executed from slave address to data end character, and the operation rule is shown as following:

Step 1: Load a 16-bit register with FFFFH. Call this the CRC register;

Step 2: Execute XOR operation with the first message command and the lower byte of 16-bit CRC register, and put the result in the CRC register;

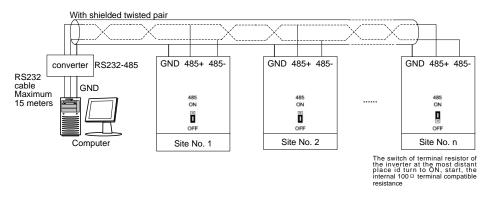
- Step 3: Shift the CRC register one bit to the right (toward the LSB), and fill the MSB with 0;
- Step 4: If the shifted bit is 0, save the new value of step 3 to CRC register; otherwise, execute XOR operation with A001H and CRC register, and save the result in CRC register;

Step 5: Repeat step3~4 until 8 shifts have been performed.


Step 6: Repeat step2~5 for the next 8-bit message command. Continue doing this until all messages have been processed. The final content of CRC register is the CRC value.

Note:

When the 16-bit CRC is transmitted in the message, the low-order byte will betransmitted first, followed by the high-order byte.


Appendix B Control Mode Setting Process

◆ A inverter connected to a computer

Appendix Fig.1A inverter connected to a computer

Several inverters connected to a computer

Appendix Fig.2Several inverters connected to a computer

Product Feedback

Dear users:

Thank you for your interest and purchasing of HNC products!

HNC adheres to the "user-centric", based on customer demand, and offering full customer service to enhance customer satisfaction.

We hope to learn about your present and future demand for HNC products as well as your valuable feedback of the products. In order to help you get our service faster and more convenient, please visit our company web site <u>www.hncelectric.com</u> for information feedback.

- 1) Download the product manual you need.
- 2) Read and download all kinds of product technical information, such as operation instruction, product specification, features, FAQ, etc.
- 3) Application cases.
- 4) Technical consultation, on-line feedback
- 5) Feedback product information and customer requirement information by e-mail.
- 6) Inquiry for the latest products, obtain various types of warranty and extend additional service, etc.

Warranty Agreement

1. The warranty period of the product is 18 months (refer to the barcode on the equipment). During the warranty period, if the product fails or is damaged under the condition of normal use by following the instructions, HNC Electric will be responsible for free maintenance.

2. Within the warranty period, maintenance will be charged for the damages caused by the following reasons:

a. Improper use or repair/modification without prior permission

- b. Fire, flood, abnormal voltage, other disasters and secondary disaster
- c. Hardware damage caused by dropping or transportation after procurement
- d. Improper operation
- e. Trouble out of the equipment (for example, external device)
- 3. If there is any failure or damage to the product, please correctly fill out the Product Warranty Card in

detail.

4. The maintenance fee is charged according to the latest Maintenance Price List of HNC Electric.

5. The Product Warranty Card is not re-issued. Please keep the card and present it to the maintenance

personnel when asking for maintenance.

6. If there is any problem during the service, contact HNC Electric's agent or HNC Electric directly.

7. This agreement shall be interpreted by HNC Electric Limited.

Version: 3.1.14 Thanks for choosing HNC product. Any technique support, please feel free to contact our support team Tel: 86(20)84898493 Fax: 86(20)61082610 URL: www.hncelectric.com Email: support@hncelectric.com

